如何计算协方差、 协方差矩阵 、 相关系数 、 马氏距离
1. 协方差、均方差、相关系数
协方差通俗的解释:
cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相关系数:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好!
2. 协方差矩阵
协方差矩阵 求法
3. 马氏距离
求马氏距离具体实例
https://www.cnblogs.com/kailugaji/p/10252280.html
>> x=[155 66;180 71;190 73;160 60;190 68;150 58;170 75] x = 155 66 180 71 190 73 160 60 190 68 150 58 170 75 >> cov=cov(x) cov = 1.0e+02 * 2.702380952380953 0.739285714285714 0.739285714285714 0.412380952380952 >> s=inv(cov) s = 0.007261927639280 -0.013018640484967 -0.013018640484967 0.047588267151168 >> a=[-25 -5]*s*[-25;-5] a = 2.473751332087140 >> sqrt(a) ans = 1.572816369474561
4. 样本的标准差
5. cov(X,X) = var(X)
6. 正定矩阵
7. 方差公式
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
· SQL Server 2025 AI相关能力初探
· 为什么 退出登录 或 修改密码 无法使 token 失效