tensorflow 笔记

1. matMul

#-*-coding:utf-8 -*-

import tensorflow as tf w1 = tf.Variable(tf.random_normal([2,3], stddev= 1, seed= 1)) w2 = tf.Variable(tf.random_normal([3,1], stddev= 1, seed= 1)) x = tf.constant([[0.7, 0.9]]) # 1×2 a = tf.matmul(x, w1) # 1×3 y = tf.matmul(a, w2) # 1×1 sess = tf.Session() # w1 w2 sess.run(w1.initializer) sess.run(w2.initializer) sess.run(y) print(y) sess.close()

 

2. eval 函数 作用: 

1.eval(): 将字符串string对象转化为有效的表达式参与求值运算返回计算结果
2.eval()也是启动计算的一种方式。基于Tensorflow的基本原理,首先需要定义图,然后计算图,其中计算图的函数常见的有run()函数,如sess.run()。同样eval()也是此类函数,
3.要注意的是,eval()只能用于tf.Tensor类对象,也就是有输出的Operation。对于没有输出的Operation, 可以用.run()或者Session.run();Session.run()没有这个限制。

import tensorflow as tf

x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
z = tf.Variable(4, name="z")
w = tf.Variable(4, name="w")
f = x * y * z + 3 - w

//单个初始化,变量增多,还真是个事
with tf.Session() as sess:
    x.initializer.run()
    y.initializer.run()
    z.initializer.run()
    w.initializer.run()
    print(x)
    print(y)
    print(z)
    print(w)
   //f fuction eval 方式和js的eval一样,作为方法函数执行
    result = f.eval()
 print(result)

 

 

3.   矩阵初始化 :

w1 = tf.constant([[1,1,1],[2,2,2]],tf.float32)
w2 = tf.constant([[3],[3],[3]],tf.float32)

 

4. 使用GPU计算

g = tf.Graph()
with g.device('/gpu:0'):
    a = tf.matmul(x, w1) # 1×3
    y = tf.matmul(a, w2) # 1×1

 

5.变量     

weights = tf.Variable(tf.random_normal([2,3], stddev = 2))// 产生2行3列  标准差为2 的变量
biases = tf.Variable(tf.zeros([3]) //初值为0 , 含有3个元素的变量

//使用w2变量初值来初始化w3
w2 = tf.Variable(weights.initialized_value())
w3 = tf.Varibale(weights.initialized_value() * 2.0)

 

符号变量

 #定义‘符号’变量,也称为占位符
 a = tf.placeholder("float")
 b = tf.placeholder("float")

 

 

6 tensorflow 训练神经网络

# 定义损失函数
cross_entropy = -tf.reduce_mean(y_ * tf/log(tf.clip_by_value(y, 1e-10, 1.0)))   //  -y_ln(y)
# 定义学习率
learning_rate = 0.01
#定义反响传播算法
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)  //使损失函数最小

 

7. 完整的神经网络训练程序

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 12 15:58:38 2018

@author: 无尾君
"""

import tensorflow as tf
from numpy.random import RandomState

batch_size = 8

w1 = tf.Variable(tf.random_normal([2,3], stddev= 1, seed= 1))
w2 = tf.Variable(tf.random_normal([3,1], stddev= 1, seed= 1))

x = tf.placeholder(tf.float32, shape= (None,2), name= 'x-input')
y_ = tf.placeholder(tf.float32, shape= (None,1), name= 'y-input')

a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)

rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1+ x2 < 1)] for (x1, x2) in X]

with tf.Session() as sess:
    tf.global_variables_initializer().run()
    print(sess.run(w1))
    print(sess.run(w2))

    STEPS = 5000
    for i in range(STEPS):
        start = (i * batch_size) % dataset_size
        end = min(start + batch_size, dataset_size)

        sess.run(train_step, feed_dict = {x: X[start:end], y_: Y[start:end]})
        if i % 1000 ==0:
            total_cross_entropy = sess.run(cross_entropy, feed_dict = {x: X, y_: Y})
            print("After %d training step(s), cross entropy on all data is %g" % (i, total_cross_entropy))

 

 

8 expanddims  :

您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。

 

 

9 运行会话

 #运行会话,输入数据,并计算节点,同时打印结果
 sess.run(y, feed_dict={a: 3, b: 3})

 

 

10  算术

 

操作描述
tf.add(x, y, name=None) 求和
tf.sub(x, y, name=None) 减法
tf.mul(x, y, name=None) 乘法
tf.div(x, y, name=None) 除法
tf.mod(x, y, name=None) 取模
tf.abs(x, name=None) 求绝对值
tf.neg(x, name=None) 取负 (y = -x).
tf.sign(x, name=None) 返回符号 y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.
tf.inv(x, name=None) 取反
tf.square(x, name=None) 计算平方 (y = x * x = x^2).
tf.round(x, name=None) 舍入最接近的整数
# ‘a’ is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ]
tf.sqrt(x, name=None) 开根号 (y = \sqrt{x} = x^{1/2}).
tf.pow(x, y, name=None) 幂次方 
# tensor ‘x’ is [[2, 2], [3, 3]]
# tensor ‘y’ is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
tf.exp(x, name=None) 计算e的次方
tf.log(x, name=None) 计算log,一个输入计算e的ln,两输入以第二输入为底
tf.maximum(x, y, name=None) 返回最大值 (x > y ? x : y)
tf.minimum(x, y, name=None) 返回最小值 (x < y ? x : y)
tf.cos(x, name=None) 三角函数cosine
tf.sin(x, name=None) 三角函数sine
tf.tan(x, name=None) 三角函数tan
tf.atan(x, name=None) 三角函数ctan

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11. transpose

tf.transpose(input, [dimension_1, dimenaion_2,..,dimension_n]):这个函数主要适用于交换输入张量的不同维度用的,如果输入张量是二维,就相当是转置。dimension_n是整数,如果张量是三维,就是用0,1,2来表示。这个列表里的每个数对应相应的维度。如果是[2,1,0],就把输入张量的第三维度和第一维度交换。


Transpose(root.WithOpName("transpose"), dived, { 0,2,1,3 });

 

 

12:   tensorflow C++ API 示例

 

这个貌似有问题  运行崩溃

#include <iostream>
#include <map>

#include "tensorflow/cc/ops/const_op.h"
#include "tensorflow/cc/ops/image_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"

using namespace std ;
using namespace tensorflow;
using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;

map<int,string> int2char;
string s = "KDA0123456789 ";
for(int i=0;i<s.size();i++){
    int2char[i]=s[i];
}

//从文件名中读取数据
Status ReadTensorFromImageFile(string file_name, const int input_height,
                               const int input_width,
                               vector<Tensor>* out_tensors) {
    auto root = Scope::NewRootScope();
    using namespace ops;

    auto file_reader = ops::ReadFile(root.WithOpName("file_reader"),file_name);
    const int wanted_channels = 1;
    Output image_reader;
    std::size_t found = file_name.find(".png");
    //判断文件格式
    if (found!=std::string::npos) {
        image_reader = DecodePng(root.WithOpName("png_reader"), file_reader,DecodePng::Channels(wanted_channels));
    } 
    else {
        image_reader = DecodeJpeg(root.WithOpName("jpeg_reader"), file_reader,DecodeJpeg::Channels(wanted_channels));
    }
    // 下面几步是读取图片并处理
    auto float_caster =Cast(root.WithOpName("float_caster"), image_reader, DT_FLOAT);
    auto dims_expander = ExpandDims(root, float_caster, 0);
    auto resized = ResizeBilinear(root, dims_expander,Const(root.WithOpName("resize"), {input_height, input_width}));
    // Div(root.WithOpName(output_name), Sub(root, resized, {input_mean}),{input_std});
    Transpose(root.WithOpName("transpose"),resized,{0,2,1,3});

    GraphDef graph;
    root.ToGraphDef(&graph);

    unique_ptr<Session> session(NewSession(SessionOptions()));
    session->Create(graph);
    session->Run({}, {"transpose"}, {}, out_tensors);//Run,获取图片数据保存到Tensor中

    return Status::OK();
}

int main(int argc, char* argv[]) {

    string graph_path = "aov_crnn.pb";
    GraphDef graph_def;
    //读取模型文件
    if (!ReadBinaryProto(Env::Default(), graph_path, &graph_def).ok()) {
        cout << "Read model .pb failed"<<endl;
        return -1;
    }

    //新建session
    unique_ptr<Session> session;
    SessionOptions sess_opt;
    sess_opt.config.mutable_gpu_options()->set_allow_growth(true);
    (&session)->reset(NewSession(sess_opt));
    if (!session->Create(graph_def).ok()) {
        cout<<"Create graph failed"<<endl;
        return -1;
    }

    //读取图像到inputs中
    int input_height = 40;
    int input_width = 240;
    vector<Tensor> inputs;
    // string image_path(argv[1]);
    string image_path("test.jpg");
    if (!ReadTensorFromImageFile(image_path, input_height, input_width,&inputs).ok()) {
        cout<<"Read image file failed"<<endl;
        return -1;
    }

    vector<Tensor> outputs;
    string input = "inputs_sq";
    string output = "results_sq";//graph中的输入节点和输出节点,需要预先知道

    pair<string,Tensor>img(input,inputs[0]);
    Status status = session->Run({img},{output}, {}, &outputs);//Run,得到运行结果,存到outputs中
    if (!status.ok()) {
        cout<<"Running model failed"<<endl;
        cout<<status.ToString()<<endl;
        return -1;
    }


    //得到模型运行结果
    Tensor t = outputs[0];        
    auto tmap = t.tensor<int64, 2>(); 
    int output_dim = t.shape().dim_size(1); 


    //预测结果解码为字符串
    string res="";
    for (int j = 0; j < output_dim; j++) {
        res+=int2char[tmap(0,j)];
    }
    cout<<res<<endl;

    return 0;
}
View Code

 

这个才是对的

#include <fstream>
#include <utility>
#include <vector>
// #include <Eigen/Core>
// #include <Eigen/Dense>

#include "tensorflow/cc/ops/const_op.h"
#include "tensorflow/cc/ops/image_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"


using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;



string model_path = "/work/dl/mosaic/keras/mobilenetv2/trans_model/mosaic.mobilenet_v2_20190425_448X448_DSPD_afew.20.pb";


const std::string class_name[2] = {
    "dummy",
    "kit fox" };
// Given an image file name, read in the data, try to decode it as an image,
// resize it to the requested size, and then scale the values as desired.
Status ReadTensorFromImageFile(string file_name, const int input_height,
    const int input_width, const float input_mean,
    const float input_std,
    std::vector<Tensor>* out_tensors) {
    auto root = tensorflow::Scope::NewRootScope();
    using namespace ::tensorflow::ops;  // NOLINT(build/namespaces)

    string input_name = "file_reader";
    string output_name = "normalized";
    auto file_reader = tensorflow::ops::ReadFile(root.WithOpName(input_name),
        file_name);
    // Now try to figure out what kind of file it is and decode it.
    const int wanted_channels = 3;
    tensorflow::Output image_reader;
    //if (tensorflow::StringPiece(file_name).ends_with(".png")) {
    //    image_reader = DecodePng(root.WithOpName("png_reader"), file_reader,
    //        DecodePng::Channels(wanted_channels));
    //}
    //else if (tensorflow::StringPiece(file_name).ends_with(".gif")) {
    //    image_reader = DecodeGif(root.WithOpName("gif_reader"), file_reader);
    //}
    //else 
    {
        // Assume if it's neither a PNG nor a GIF then it must be a JPEG.
        image_reader = DecodeJpeg(root.WithOpName("jpeg_reader"), file_reader,
            DecodeJpeg::Channels(wanted_channels));
    }
    // Now cast the image data to float so we can do normal math on it.
    auto float_caster =
        Cast(root.WithOpName("float_caster"), image_reader, tensorflow::DT_FLOAT);
    // The convention for image ops in TensorFlow is that all images are expected
    // to be in batches, so that they're four-dimensional arrays with indices of
    // [batch, height, width, channel]. Because we only have a single image, we
    // have to add a batch dimension of 1 to the start with ExpandDims().
    auto dims_expander = ExpandDims(root, float_caster, 0);
    // Bilinearly resize the image to fit the required dimensions.
    auto resized = ResizeBilinear(
        root, dims_expander,
        Const(root.WithOpName("size"), { input_height, input_width }));
    // Subtract the mean and divide by the scale.
    Div(root.WithOpName(output_name), Sub(root, resized, { input_mean }),
    { input_std });

    // This runs the GraphDef network definition that we've just constructed, and
    // returns the results in the output tensor.
    tensorflow::GraphDef graph;
    TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));

    std::unique_ptr<tensorflow::Session> session(
        tensorflow::NewSession(tensorflow::SessionOptions()));
    TF_RETURN_IF_ERROR(session->Create(graph));
    TF_RETURN_IF_ERROR(session->Run({}, { output_name }, {}, out_tensors));
    return Status::OK();
}

int main(int argc, char* argv[]) {

    string graph_path = model_path;
    tensorflow::port::InitMain(argv[0], &argc, &argv);

    tensorflow::GraphDef graph_def;
    if (!ReadBinaryProto(tensorflow::Env::Default(), graph_path, &graph_def).ok()) {
        LOG(ERROR) << "Read proto";
        return -1;
    }

    std::unique_ptr<tensorflow::Session> session;
    tensorflow::SessionOptions sess_opt;
    sess_opt.config.mutable_gpu_options()->set_allow_growth(true);
    (&session)->reset(tensorflow::NewSession(sess_opt));
    if (!session->Create(graph_def).ok()) {
        LOG(ERROR) << "Create graph";
        return -1;
    }

    const int batch_size = argc - 1;
    if (batch_size != 1) {
        LOG(ERROR) << "Batch mode for the pretrained inception-v3 is unsupported";
        LOG(ERROR) << " - https://github.com/tensorflow/tensorflow/issues/554";
        return -1;
    }

    int32 input_dim = 448;
    float input_mean = 128;
    float input_std = 128;
    std::vector<Tensor> inputs;
    std::string image_path(argv[1]);
    if (!ReadTensorFromImageFile(image_path, input_dim, input_dim, input_mean,
        input_std, &inputs).ok()) {
        LOG(ERROR) << "Load image";
        return -1;
    }

    std::vector<Tensor> outputs;
    //string input_layer = "Mul";
    //string output_layer = "softmax";
    string input_layer = "input_1";
    string output_layer = "dense_2/Softmax";

    if (!session->Run({ { input_layer, inputs[0] } },
    { output_layer }, {}, &outputs).ok()) {
        LOG(ERROR) << "Running model failed";
        return -1;
    }


    printf("Is predicting ... \n");
    //得到模型运行结果
    Tensor t = outputs[0];
    auto tmap = t.tensor<float, 2>();
    for (int i = 0; i != 2; ++i) {
        printf("p[%d]=%.2f\n", i, tmap(0, i));
    }
    int output_dim = t.shape().dim_size(1);
    for (int j = 0; j < output_dim; j++) {
        tmap(0, j);
    }
    printf("predicting  OK \n");

    //Eigen::Map<Eigen::VectorXf> pred(outputs[0].flat<float>().data(),
    //    outputs[0].NumElements());
    //int maxIndex; float maxValue = pred.maxCoeff(&maxIndex);
    //LOG(INFO) << "P( " << class_name[maxIndex] << " | image ) = " << maxValue;

    return 0;
}
View Code

 

编译 :

g++ -g -D_GLIBCXX_USE_CXX11_ABI=0 tf_predict.cpp -o tf_predict -I /usr/include/eigen3 -I /usr/local/include/tf  -L/usr/local/lib/ `pkg-config --cflags --libs protobuf`  -ltensorflow_cc  -ltensorflow_framework

 

使用Opencv 读取tensor

tensorflow::Tensor readTensor(string filename){
    tensorflow::Tensor input_tensor(DT_FLOAT,TensorShape({1,240,40,1}));
    Mat src=imread(filename,0);
    Mat dst;
    resize(src,dst,Size(240,40));//resize
    Mat dst_transpose=dst.t();//transpose

    auto tmap=input_tensor.tensor<float,4>();

    for(int i=0;i<240;i++){//Mat复制到Tensor
        for(int j=0;j<40;j++){
            tmap(0,i,j,0)=dst_transpose.at<uchar>(i,j);
        }
    }

    return input_tensor;
}

 

 

13  tensorflow 取指针

float* p = input_tensor.flat<float>().data()

 

posted @ 2019-05-16 14:44  洛笔达  阅读(443)  评论(0编辑  收藏  举报