Python之路【第三篇补充】:Python基础(三)

参考老师:http://www.cnblogs.com/wupeiqi

lambda表达式

学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:

# 普通条件语句
if 1 == 1:
    name = ‘luotianshuai'
else:
    name = 'shuaige'
  
# 三元运算
name = 'luotianshuai' if 1 == 1 else 'shuaige'

#这个就是if else的一个简写。
#if 条件成立的时候name为'luotianshuai' 不成立的时候为:'shuaige' ,语法糖!

 

那么函数有没有他的简写呢?也是有的lambda表达式!

lambda 和if  else的三元运算一样,是为了简化函数,但是:

1、只能做简单的操作
2、自动return

看下面两个函数的对比:

'''正常函数'''
def func(arg):
    return arg + 1
result = func(100)
print result

'''lambda表达式'''
func2 =  lambda a: a + 1
result = func2(10000)
#这里调用函数的时候就是lambda表达式左边的等号就是他函数的调用!
print result

#执行结果:
#101
#10001

内置函数 二

一、map

遍历序列,对序列中每个元素进行操作,最终获取新的序列。

解释:

在Python中,最基本的数据结构是序列(sequence)。序列中的每个元素被分配一个序号——即元素的位置,也称为索引。第一个索引是 0,第二个则是 1,以此类推。序列中的最后一个元素标记为 -1,倒数第二个元素为 -2,一次类推。        

Python包含 6 中内建的序列,包括列表、元组、字符串、Unicode字符串、buffer对象和xrange对象。

'''例子1'''
li =  [11,22,33]

def func1(arg):
    return arg + 1  #这里乘除都可以

new_list = map(func1,li)  #这里map调用函数,函数的规则你可以自己指定,你函数定义成什么他就做什么操作!
print new_list
输出结果:[12, 23, 34]

'''例子2'''
li = ['shuaige','nihao',]
def func1(arg):
    return '%s test string' % arg  #或者使用+进行拼接万恶的+能不用最好不用他会在内存中开辟新的空间!

new_strlist = map(func1,li)
print new_strlist

输出结果:['shuaige test string', 'nihao test string']

'''例子3'''
li = 'abcdefg'
def func1(arg):
    return '%s test string' % arg

new_list = map(func1,li)
print new_list
#结果:['a test string', 'b test string', 'c test string', 'd test string', 'e test string', 'f test string', 'g test string']
map例子

 

使用lambda表达式:

li = [11,22,33,44,55]
new_li = map(lambda a:a + 100,li)
print new_li

#输出结果:   [111, 122, 133, 144, 155]


#多个列表操作:
l1 = [11,22,33,44,55]
l2 = [22,33,44,55,66]
l3 = [33,44,55,66,77]
print map(lambda a1,a2,a3:a1+a2+a3,l1,l2,l3)
#输出结果:  [66, 99, 132, 165, 198] 
#这里需要注意如果使用map函数列表中的元素必须是相同的才可以!否则就会报下面的错误!
#TypeError: unsupported operand type(s) for +: 'int' and 'NoneType',如果看下面
l1 = [11,22,33,44,55]
l2 = [22,33,44,55,66]
l3 = [33,44,55,66,]
#l3的数据少一个,如果元素里的元素为空那么他调用的时候这个元素就是None
lambda表达式

 

二、filter

对于序列中的元素进行筛选,最终获取符合条件的序列!

li = [11,22,33,44,55,66,77,88]

print filter(lambda a:a>33,li)
输出结果:[44, 55, 66, 77, 88]

三、reduce

对于序列内所有元素进行累计操作

li = [1,2,3,4,5,6,7,8]
result =  reduce(lambda a1,a2:a1+a2,li) #累乘、除、加、减
print result

# reduce的第一个参数,函数必须要有两个参数,因为他是两两进行操作
# reduce的第二个参数,要循环的序列
# reduce的第三个参数,初始值

#初始值
li = [1,2,3,4,5,6,7,8]
result =  reduce(lambda a1,a2:a1+a2,li,100000) #累乘、除、加、减
print result

默认参数:

yield生成器

yield和return的区别:

    yield跳出函数后会记录当前函数的状态当下次调用的时候,从记录的状态开始!

    return后将直接跳出函数!

1、对比range 和 xrange 的区别

>>> print range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print xrange(10)
xrange(10)

如上代码所示,range会在内存中创建所有指定的数字,而xrange不会立即创建,只有在迭代循环时,才去创建每个数组。

看下下面的例子:(自定义生成器)

def mrange(arg):
    seed = 0
    while True:
        seed = seed +1
        if seed > arg:
            return
        else:
            yield seed
for i in mrange(10):
    print i

 冒泡算法

 

需求:请按照从小到大对列表 [13, 22, 6, 99, 11] 进行排序

 

思路:相邻两个值进行比较,将较大的值放在右侧,依次比较!

冒泡算法原理图:

冒泡算法实例:
列表中有5个元素两辆进行比较,然后用中间值进行循环替换!
既然这样,既然这样我们还可以用一个循环把上面的循环进行在次循环,用表达式构造出内部循环!

li = [13,22,6,99,11]
for n in range(1,len(li)):
    for m in range(len(li)-n):
        num1 = li[m]
        num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print li

让的原理和下面一样:

li = [13,22,6,99,11]

for m in range(4):  #等价于:for m in range(len(li)-1)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li
for m in range(3): #等价于:for m in range(len(li)-2)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li
for m in range(2): #等价于:for m in range(len(li)-3)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li
for m in range(1): #等价于:for m in range(len(li)-4)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li
冒泡算法原理

 装饰器

装饰器是函数,只不过该函数可以具有特殊的含义,装饰器用来装饰函数或类,使用装饰器可以在函数执行前和执行后添加相应操作。

简单的来说在不修改原函数的情况下,在对原函数进行包装!

 

一、初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

 

############### 基础平台提供的功能如下 ############### 
 
def f1():
    print 'f1'
 
def f2():
    print 'f2'
 
def f3():
    print 'f3'
 
def f4():
    print 'f4'
 
############### 业务部门A 调用基础平台提供的功能 ############### 
 
f1()
f2()
f3()
f4()
 
############### 业务部门B 调用基础平台提供的功能 ############### 
 
f1()
f2()
f3()
f4()

 目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

老大把工作交给 Low B,他是这么做的:

 

跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。

 

 当天Low B 被开除了...

老大把工作交给 Low BB,他是这么做的:

只对基础平台的代码进行重构,让N业务部门无需做任何修改
############### 基础平台提供的功能如下 ############### 

def f1():
    # 验证1
    # 验证2
    # 验证3
    print 'f1'

def f2():
    # 验证1
    # 验证2
    # 验证3
    print 'f2'

def f3():
    # 验证1
    # 验证2
    # 验证3
    print 'f3'

def f4():
    # 验证1
    # 验证2
    # 验证3
    print 'f4'

############### 业务部门不变 ############### 
### 业务部门A 调用基础平台提供的功能### 

f1()
f2()
f3()
f4()

### 业务部门B 调用基础平台提供的功能 ### 

f1()
f2()
f3()
f4()
修改原基础平台代码

过了一周 Low BB 被开除了...

老大把工作交给 Low BBB,他是这么做的:

只对基础平台的代码进行重构,其他业务部门无需做任何修改
############### 基础平台提供的功能如下 ############### 

def check_login():
    # 验证1
    # 验证2
    # 验证3
    pass


def f1():
    
    check_login()

    print 'f1'

def f2():
    
    check_login()

    print 'f2'

def f3():
    
    check_login()

    print 'f3'

def f4():
    
    check_login()
    
    print 'f4'
新建立一个函数把函数应用到原基础函数上

老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:

写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

  • 封闭:已实现的功能代码块
  • 开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
 
@w1
def f1():
    print 'f1'
@w1
def f2():
    print 'f2'
@w1
def f3():
    print 'f3'
@w1
def f4():
    print 'f4'

 

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:

单独以f1为例:

def w1(func):
    def inner():
        print 'gongneng1'
        func()
        print 'gongneng2'
    return inner

@w1
def f1():
    print 'f1'

f1()

 当执行的时候,python是由上到下执行的,首先执行到def w1(func):这里把def w1(func)加载到内存

当执行到@w1的时候@w1是python的语法糖!他会把他下面的函数进行封装。

把f1这个函数作为def w1(func)的参数传进去!就是:f1()=w1(f1)

然后def w1(func):  == w1(f1)就会执行:

    def inner():
        print 'gongneng1'
        func()   #func()  == f1()“原函数”
        print 'gongneng2'
    return inner  #然后把封装后的函数输出给原函数

@w1就相当于做了一个替换

def f1()  <==> def inner()

@w1
def f1():         #  ==def inner() :
    print 'f1'    #           print 'gongneng1'
                  #           func()
                  #           print 'gongneng2'

 

二、被装饰的函数如果有参数呢?

def w1(func):
    def inner(arg):
        # 验证1
        # 验证2
        # 验证3
        return func(arg)
    return inner

@w1
def f1(arg):
    print 'f1'

一个参数


################################
def w1(func):
    def inner(arg1,arg2):
        # 验证1
        # 验证2
        # 验证3
        return func(arg1,arg2)
    return inner

@w1
def f1(arg1,arg2):
    print 'f1'

两个参数
################################
def w1(func):
    def inner(arg1,arg2,arg3):
        # 验证1
        # 验证2
        # 验证3
        return func(arg1,arg2,arg3)
    return inner

@w1
def f1(arg1,arg2,arg3):
    print 'f1'

三个参数

 用动态参数搞定!

def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
@w1
def f1(arg1,arg2,arg3):
    print 'f1'

三、一个函数可以被多个装饰器装饰吗?

def w1(func):
    def inner(*args,**kwargs):
        print 'gongneng1'
        func(*args,**kwargs)
        print 'gongneng2'
    return inner
def w2(func):
    def inner(*args,**kwargs):
        print 'gongneng3'
        func(*args,**kwargs)
        print 'gongneng4'
    return inner

@w1
@w2
def f1(arg,arg2,arg3):
    print arg,arg2,arg3

f1('nihao','tianshuai','shuaige')

 输出结果:

gongneng1
gongneng3
nihao tianshuai shuaige
gongneng4
gongneng2

 这个被多个装饰器装饰,其实就是套完一层在套一层!勿把自己绕进去!

 四、还有什么更吊的装饰器吗?

def Filter(a1,a2):
    def outer(main_func):
        def wrapper(request,kargs):
            print a1
            main_result = main_func(request,kargs)
            print a2
                return main_result
        return wrapper
    return outer

@Filter(f5, f6)
def Index(request,kargs):
    print 'index'
    
'''
1、第一步:把def Filter(a1,a2): 加载到内存
2、第二步:@Filter(f5, f6)  == 调用了装饰器  == @outer 然后返回给函数
3、第散步:执行outer函数并返回给index函数  Index == wrapper
4、执行wrapper 函数,这样做的意义就是除了原函数给的参数外,装饰器也可以调用自己定义的参数

'''

 这样做的意义就是除了原函数给的参数外,装饰器也可以调用自己定义的参数

posted @ 2015-11-22 21:51  天帅  阅读(1700)  评论(2编辑  收藏  举报