(转)多个mapreduce工作相互依赖处理方法完整实例(JobControl)
多个mapreduce工作相互依赖处理方法完整实例(JobControl)
原文地址:http://mntms.iteye.com/blog/2096456?utm_source=tuicool&utm_medium=referral
处理复杂的要求的时候,有时一个mapreduce程序时完成不了的,往往需要多个mapreduce程序,这个时候就要牵扯到各个任务之间的依赖关系,所谓依赖就是一个M/R Job 的处理结果是另外的M/R 的输入,以此类推,完成几个mapreduce程序,得到最后的结果,下面将直接贴出一个例子的全部代码,因为为了找一个完整的例子实在是太难了,今天找了半天才把这个问题解决。
代码描述,一共包括两个mapreduce作业。也就是两个map和两个reduce函数,第一个job处理后的输出是第二个job的输入,然后交由第二个job来做出最后的结果,代码里面的关键的地方已经有了注释
先是代码的主体部分:
上代码:
- /*
- * anthor TMS
- */
- package 依赖MR处理方法;
- import java.io.IOException;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapred.JobConf;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob;
- import org.apache.hadoop.mapreduce.lib.jobcontrol.JobControl;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- public class MODEL {
- //第一个Job的map函数
- public static class Map_First extends Mapper<Object, Text ,Text , IntWritable>{ private final static IntWritable one = new IntWritable(1);
- private Text keys = new Text();
- public void map(Object key,Text value, Context context ) throws IOException, InterruptedException {
- String s = value.toString();
- String[] allStr = Config.CatString(s);
- keys.set(allStr[1]);
- context.write(keys, one);
- }
- }
- //第一个Job的reduce函数
- public static class Reduce_First extends Reducer<Text, IntWritable, Text, IntWritable> {
- private IntWritable result = new IntWritable();
- public void reduce(Text key,Iterable<IntWritable>values, Context context) throws IOException, InterruptedException {
- int sum = 0;
- for(IntWritable value:values) {
- sum += value.get();
- }
- result.set(sum);
- context.write(key, result);
- }
- }
- //第二个job的map函数
- public static class Map_Second extends Mapper<Object, Text ,Text , IntWritable>{
- private final static IntWritable one = new IntWritable(1);
- private Text keys = new Text();
- public void map(Object key,Text value, Context context ) throws IOException, InterruptedException {
- String s = value.toString();
- String[] allStr = Config.CatString(s);
- keys.set(allStr[1]);
- context.write(keys, one);
- }
- }
- //第二个Job的reduce函数
- public static class Reduce_Second extends Reducer<Text, IntWritable, Text, IntWritable> {
- private IntWritable result = new IntWritable();
- public void reduce(Text key,Iterable<IntWritable>values, Context context) throws IOException, InterruptedException {
- int sum = 0;
- for(IntWritable value:values) {
- sum += value.get();
- }
- result.set(sum);
- context.write(key, result);
- }
- }
- //启动函数
- public static void main(String[] args) throws IOException {
- JobConf conf = new JobConf(MODEL.class);
- //第一个job的配置
- Job job1 = new Job(conf,"join1");
- job1.setJarByClass(MODEL.class);
- job1.setMapperClass(Map_First.class);
- job1.setReducerClass(Reduce_First.class);
- job1.setMapOutputKeyClass(Text.class);//map阶段的输出的key
- job1.setMapOutputValueClass(IntWritable.class);//map阶段的输出的value
- job1.setOutputKeyClass(Text.class);//reduce阶段的输出的key
- job1.setOutputValueClass(IntWritable.class);//reduce阶段的输出的value
- //加入控制容器
- ControlledJob ctrljob1=new ControlledJob(conf);
- ctrljob1.setJob(job1);
- //job1的输入输出文件路径
- FileInputFormat.addInputPath(job1, new Path(args[0]));
- FileOutputFormat.setOutputPath(job1, new Path(args[1]));
- //第二个job的配置
- Job job2=new Job(conf,"Join2");
- job2.setJarByClass(MODEL.class);
- job2.setMapperClass(Map_Second.class);
- job2.setReducerClass(Reduce_Second.class);
- job2.setMapOutputKeyClass(Text.class);//map阶段的输出的key
- job2.setMapOutputValueClass(IntWritable.class);//map阶段的输出的value
- job2.setOutputKeyClass(Text.class);//reduce阶段的输出的key
- job2.setOutputValueClass(IntWritable.class);//reduce阶段的输出的value
- //作业2加入控制容器
- ControlledJob ctrljob2=new ControlledJob(conf);
- ctrljob2.setJob(job2);
- //设置多个作业直接的依赖关系
- //如下所写:
- //意思为job2的启动,依赖于job1作业的完成
- ctrljob2.addDependingJob(ctrljob1);
- //输入路径是上一个作业的输出路径,因此这里填args[1],要和上面对应好
- FileInputFormat.addInputPath(job2, new Path(args[1]));
- //输出路径从新传入一个参数,这里需要注意,因为我们最后的输出文件一定要是没有出现过得
- //因此我们在这里new Path(args[2])因为args[2]在上面没有用过,只要和上面不同就可以了
- FileOutputFormat.setOutputPath(job2,new Path(args[2]) );
- //主的控制容器,控制上面的总的两个子作业
- JobControl jobCtrl=new JobControl("myctrl");
- //添加到总的JobControl里,进行控制
- jobCtrl.addJob(ctrljob1);
- jobCtrl.addJob(ctrljob2);
- //在线程启动,记住一定要有这个
- Thread t=new Thread(jobCtrl);
- t.start();
- while(true){
- if(jobCtrl.allFinished()){//如果作业成功完成,就打印成功作业的信息
- System.out.println(jobCtrl.getSuccessfulJobList());
- jobCtrl.stop();
- break;
- }
- }
- }
- }
工程上右键run进行配置:先配置第一个栏目main里面的Project(项目名)和Main Class(主类名)
接下来是arguments如下所示:
最后点击Apply然后Run,运行成功之后,刷新DFS出现几个文件,如下分别为输入的原始数据文件,第一个mapreduce任务后输出的文件output和第二个mapreduce任务之后输出的文件output1
这里只有两个mapreduce任务,多个也是一样,主要的思想就是先写好每一个mapreduce任务的主体部分,也就是map和reduce函数,然后就是分别配置每一个mapreduce任务(这里要注意设置好输入和输出路径,很容易忘记!!!)此时将job任务加入到控制容器,每一个都要加,再就是使用addDependingJob()添加依赖关系,再用一个总的控制器控制每一个任务。最后用一个线程启动!!!