JVM 类加载过程

在程序运行时,JVM虚拟机就需要加载已经编译后的字节码文件到内存中执行程序

类的生命周期#

类从被加载到虚拟机内存中开始到卸载出内存为止,它的整个生命周期可以简单概括为 7 个阶段::加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)。其中,验证、准备和解析这三个阶段可以统称为连接(Linking)


其中类加载的过程包括了加载验证准备解析初始化五个阶段。在这五个阶段中,加载验证准备初始化这四个阶段发生的顺序是确定的,解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定)

类的加载#

加载时类加载过程的第一个阶段,在加载阶段,虚拟机需要完成以下三件事情:

  • 通过一个类的全限定名来获取其定义的二进制字节流。
  • 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
  • 在Java堆中生成一个代表这个类的java.lang.Class对象,作为对方法区中这些数据的访问入口。
    相对于类加载的其他阶段而言,加载阶段(准确地说,是加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,因为开发人员既可以使用系统提供的类加载器来完成加载,也可以自定义自己的类加载器来完成加载。
    加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,而且在Java堆中也创建一个java.lang.Class类的对象,这样便可以通过该对象访问方法区中的这些数据。
    类加载器并不需要等到某个类被“首次主动使用”时再加载它,JVM规范允许类加载器在预料某个类将要被使用时就预先加载它,如果在预先加载的过程中遇到了.class文件缺失或存在错误,类加载器必须在程序首次主动使用该类时才报告错误(LinkageError错误)如果这个类一直没有被程序主动使用,那么类加载器就不会报告错误。

加载.class文件的方式

  • 从本地系统中直接加载
  • 通过网络下载.class文件
  • 从zip,jar等归档文件中加载.class文件
  • 从专有数据库中提取.class文件
  • 将Java源文件动态编译为.class文件

连接#

验证: 确保被加载的类的正确性#

验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。验证阶段大致会完成4个阶段的检验动作:

  • 文件格式验证: 验证字节流是否符合Class文件格式的规范;例如: 是否以0xCAFEBABE开头、主次版本号是否在当前虚拟机的处理范围之内、常量池中的常量是否有不被支持的类型。
  • 元数据验证: 对字节码描述的信息进行语义分析(注意: 对比javac编译阶段的语义分析),以保证其描述的信息符合Java语言规范的要求;例如: 这个类是否有父类,除了java.lang.Object之外。
  • 字节码验证: 通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。
  • 符号引用验证: 确保解析动作能正确执行。

验证阶段是非常重要的,但不是必须的,它对程序运行期没有影响,如果所引用的类经过反复验证,那么可以考虑采用-Xverifynone参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。

准备: 为类的静态变量分配内存,并将其初始化为默认值#

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:

  • 这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在Java堆中。
  • 这里所设置的初始值通常情况下是数据类型默认的零值(如00Lnullfalse等),而不是被在Java代码中被显式地赋予的值。
    假设一个类变量的定义为: public static int value = 3;那么变量value在准备阶段过后的初始值为0,而不是3,因为这时候尚未开始执行任何Java方法,而把value赋值为3的put static指令是在程序编译后,存放于类构造器<clinit>()方法之中的,所以把value赋值为3的动作将在初始化阶段才会执行。

这里还需要注意如下几点

  • 对基本数据类型来说,对于类变量(static)和全局变量,如果不显式地对其赋值而直接使用,则系统会为其赋予默认的零值,而对于局部变量来说,在使用前必须显式地为其赋值,否则编译时不通过。
  • 对于同时被staticfinal修饰的常量,必须在声明的时候就为其显式地赋值,否则编译时不通过;而只被final修饰的常量则既可以在声明时显式地为其赋值,也可以在类初始化时显式地为其赋值,总之,在使用前必须为其显式地赋值,系统不会为其赋予默认零值。
  • 对于引用数据类型reference来说,如数组引用、对象引用等,如果没有对其进行显式地赋值而直接使用,系统都会为其赋予默认的零值,即null
  • 如果在数组初始化时没有对数组中的各元素赋值,那么其中的元素将根据对应的数据类型而被赋予默认的零值。
  • 如果类字段的字段属性表中存在ConstantValue属性,即同时被final和static修饰,那么在准备阶段变量value就会被初始化为ConstValue属性所指定的值。假设上面的类变量value被定义为: public static final int value = 3;编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据ConstantValue的设置将value赋值为3。我们可以理解为static final常量在编译期就将其结果放入了调用它的类的常量池中

解析: 把类中的符号引用转换为直接引用#

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,解析动作主要针对接口字段类方法接口方法方法类型方法句柄调用点限定符7类符号引用进行。符号引用就是一组符号来描述目标,可以是任何字面量。
直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。

初始化#

初始化,为类的静态变量赋予正确的初始值,JVM负责对类进行初始化,主要对类变量进行初始化。在Java中对类变量进行初始值设定有两种方式:

  • 声明类变量是指定初始值
  • 使用静态代码块为类变量指定初始值

JVM初始化步骤

  • 假如这个类还没有被加载和连接,则程序先加载并连接该类
  • 假如该类的直接父类还没有被初始化,则先初始化其直接父类
  • 假如类中有初始化语句,则系统依次执行这些初始化语句

类初始化时机: 只有当对类的主动使用的时候才会导致类的初始化,类的主动使用包括以下六种:

  • 创建类的实例,也就是new的方式
  • 访问某个类或接口的静态变量,或者对该静态变量赋值
  • 调用类的静态方法
  • 反射(如Class.forName("com.jvm.Test"))
  • 初始化某个类的子类,则其父类也会被初始化
  • Java虚拟机启动时被标明为启动类的类(Java Test),直接使用java.exe命令来运行某个主类

使用#

类访问方法区内的数据结构的接口, 对象是Heap区的数据。

卸载#

Java虚拟机将结束生命周期的几种情况

  • 执行了System.exit()方法

  • 程序正常执行结束

  • 程序在执行过程中遇到了异常或错误而异常终止

  • 由于操作系统出现错误而导致Java虚拟机进程终止

    类加载器#

    类加载器的层次#

    注意: 这里父类加载器并不是通过继承关系来实现的,而是采用组合实现的。
    站在Java虚拟机的角度来讲,只存在两种不同的类加载器: 启动类加载器: 它使用C++实现(这里仅限于Hotspot,也就是JDK1.5之后默认的虚拟机,有很多其他的虚拟机是用Java语言实现的),是虚拟机自身的一部分;所有其他的类加载器: 这些类加载器都由Java语言实现,独立于虚拟机之外,并且全部继承自抽象类java.lang.ClassLoader,这些类加载器需要由启动类加载器加载到内存中之后才能去加载其他的类。

    站在Java开发人员的角度来看,类加载器可以大致划分为以下三类 :

    启动类加载器: Bootstrap ClassLoader,负责加载存放在JDK\jre\lib(JDK代表JDK的安装目录,下同)下,或被-Xbootclasspath参数指定的路径中的,并且能被虚拟机识别的类库(如rt.jar,所有的java.*开头的类均被Bootstrap ClassLoader加载)。启动类加载器是无法被Java程序直接引用的。

    扩展类加载器: Extension ClassLoader,该加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载JDK\jre\lib\ext目录中,或者由java.ext.dirs系统变量指定的路径中的所有类库(如javax.*开头的类),开发者可以直接使用扩展类加载器。

    应用程序类加载器: Application ClassLoader,该类加载器由sun.misc.Launcher$AppClassLoader来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

    应用程序都是由这三种类加载器互相配合进行加载的,如果有必要,我们还可以加入自定义的类加载器。因为JVM自带的ClassLoader只是懂得从本地文件系统加载标准的java class文件,因此如果编写了自己的ClassLoader,便可以做到如下几点:

    • 在执行非置信代码之前,自动验证数字签名。
    • 动态地创建符合用户特定需要的定制化构建类。
    • 从特定的场所取得java class,例如数据库中和网络中。

    寻找类加载器#

    寻找类加载器小例子如下:

    package com.jvm.classloader;
    public class ClassLoaderTest {
         public static void main(String[] args) {
            ClassLoader loader = Thread.currentThread().getContextClassLoader();
            System.out.println(loader);
            System.out.println(loader.getParent());
            System.out.println(loader.getParent().getParent());
        }
    }
    

    结果如下:

    sun.misc.Launcher$AppClassLoader@64fef26a
    sun.misc.Launcher$ExtClassLoader@1ddd40f3
    null
    

    从上面的结果可以看出,并没有获取到ExtClassLoader的父Loader,原因是BootstrapLoader(引导类加载器)是用C语言实现的,找不到一个确定的返回父Loader的方式,于是就返回null

    类的加载#

    类加载有三种方式:

    1、命令行启动应用时候由JVM初始化加载

    2、通过Class.forName()方法动态加载

    3、通过ClassLoader.loadClass()方法动态加载

    package com.jvm.classloader;
    public class loaderTest { 
            public static void main(String[] args) throws ClassNotFoundException { 
                    ClassLoader loader = HelloWorld.class.getClassLoader(); 
                    System.out.println(loader); 
                    //使用ClassLoader.loadClass()来加载类,不会执行初始化块 
                    loader.loadClass("Test2"); 
                    //使用Class.forName()来加载类,默认会执行初始化块 
    //                Class.forName("Test2"); 
                    //使用Class.forName()来加载类,并指定ClassLoader,初始化时不执行静态块 
    //                Class.forName("Test2", false, loader); 
            } 
    }
    
    public class Test2 { 
            static { 
                    System.out.println("静态初始化块执行了!"); 
            } 
    }
    

    分别切换加载方式,会有不同的输出结果。

    Class.forName()和ClassLoader.loadClass()区别?

    • Class.forName(): 将类的.class文件加载到jvm中之外,还会对类进行解释,执行类中的static块;
    • ClassLoader.loadClass(): 只干一件事情,就是将.class文件加载到jvm中,不会执行static中的内容,只有在newInstance才会去执行static块。
    • Class.forName(name, initialize, loader)带参函数也可控制是否加载static块。并且只有调用了newInstance()方法采用调用构造函数,创建类的对象 。

    JVM类加载机制#

    • 全盘负责,当一个类加载器负责加载某个Class时,该Class所依赖的和引用的其他Class也将由该类加载器负责载入,除非显示使用另外一个类加载器来载入
    • 父类委托,先让父类加载器试图加载该类,只有在父类加载器无法加载该类时才尝试从自己的类路径中加载该类
    • 缓存机制,缓存机制将会保证所有加载过的Class都会被缓存,当程序中需要使用某个Class时,类加载器先从缓存区寻找该Class,只有缓存区不存在,系统才会读取该类对应的二进制数据,并将其转换成Class对象,存入缓存区。这就是为什么修改了Class后,必须重启JVM,程序的修改才会生效
    • 双亲委派机制, 如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把请求委托给父加载器去完成,依次向上,因此,所有的类加载请求最终都应该被传递到顶层的启动类加载器中,只有当父加载器在它的搜索范围中没有找到所需的类时,即无法完成该加载,子加载器才会尝试自己去加载该类。

    双亲委派机制过程?

    1. 当AppClassLoader加载一个class时,它首先不会自己去尝试加载这个类,而是把类加载请求委派给父类加载器ExtClassLoader去完成。
    2. 当ExtClassLoader加载一个class时,它首先也不会自己去尝试加载这个类,而是把类加载请求委派给BootStrapClassLoader去完成。
    3. 如果BootStrapClassLoader加载失败(例如在$JAVA_HOME/jre/lib里未查找到该class),会使用ExtClassLoader来尝试加载;
    4. 若ExtClassLoader也加载失败,则会使用AppClassLoader来加载,如果AppClassLoader也加载失败,则会报出异常ClassNotFoundException。

    双亲委派代码实现

    public Class<?> loadClass(String name)throws ClassNotFoundException {
    		return loadClass(name, false);
    }
    protected synchronized Class<?> loadClass(String name, boolean resolve)throws ClassNotFoundException {
    		// 首先判断该类型是否已经被加载
    	Class c = findLoadedClass(name);
    	if (c == null) {
    		//如果没有被加载,就委托给父类加载或者委派给启动类加载器加载
    		try {
    			if (parent != null) {
    				 //如果存在父类加载器,就委派给父类加载器加载
    				c = parent.loadClass(name, false);
    			} else {
    			//如果不存在父类加载器,就检查是否是由启动类加载器加载的类,通过调用本地方法native Class findBootstrapClass(String name)
    				c = findBootstrapClass0(name);
    			}
    		} catch (ClassNotFoundException e) {
    		 // 如果父类加载器和启动类加载器都不能完成加载任务,才调用自身的加载功能
    			c = findClass(name);
    		}
    	}
    	if (resolve) {
    		resolveClass(c);
    	}
    	return c;
    }
    

    双亲委派优势

    • 系统类防止内存中出现多份同样的字节码
    • 保证Java程序安全稳定运行

    如何打破双排委派

    1. 自定义类加载器:通过自定义ClassLoader的子类,重写findClass()方法,实现自定义的类加载逻辑。在自定义类加载器中,可以选择不委派给父类加载器,而是自己去加载类。
    public class CustomClassLoader extends ClassLoader {
        @Override
        protected Class<?> findClass(String name) throws ClassNotFoundException {
            // 自定义类加载逻辑,例如从特定路径加载类文件
            byte[] classBytes = loadClassBytes(name);
            return defineClass(name, classBytes, 0, classBytes.length);
        }
    
        private byte[] loadClassBytes(String name) {
            // 从特定路径加载类文件,并返回字节码
            // ...
        }
    }
    
    • 线程上下文类加载器:通过Thread类的setContextClassLoader()方法,可以设置线程的上下文类加载器。在某些框架或库中,会使用线程上下文类加载器来加载特定的类,从而打破双亲委派机制。
    • OSGi框架:OSGi(Open Service Gateway Initiative)是一种动态模块化的Java平台,它提供了一套机制来管理和加载模块。在OSGi中,每个模块都有自己的类加载器,可以独立加载和管理类,从而打破双亲委派机制。
    • Java SPI机制:Java SPI(Service Provider Interface)是一种标准的服务发现机制,在SPI中,服务的实现类通过在META-INF/services目录下的配置文件中声明,而不是通过类路径来查找。通过SPI机制,可以实现在不同的类加载器中加载不同的服务实现类,从而打破双亲委派机制。

    需要注意的是,打破双亲委派机制可能会引入一些潜在的风险和问题,如类的冲突、不一致性等。在使用这些方法打破双亲委派机制时,需要谨慎考虑,并确保能够正确处理类的加载和依赖关系。

    除了上述提到的方法,还有一些其他的方法可以打破双亲委派机制:

    • 使用Java Instrumentation API:Java Instrumentation API允许在类加载过程中修改字节码,从而可以在类加载时修改类的加载行为,包括打破双亲委派机制。通过Instrumentation API,可以在类加载前修改类的字节码,使其加载时使用自定义的类加载器。
    • 使用Java动态代理:Java动态代理机制可以在运行时生成代理类,并在代理类中实现特定的逻辑。通过使用动态代理,可以在类加载时动态生成代理类,并在代理类中实现自定义的类加载逻辑,从而打破双亲委派机制。
    • 使用字节码操作库:可以使用字节码操作库,如ASM、Javassist等,来直接操作字节码,从而修改类的加载行为。通过这些库,可以在类加载时修改字节码,使其加载时使用自定义的类加载器。

    在某些框架或场景中,为了满足特定的需求,可能会打破双亲委派机制。以下是一些常见的框架或场景:

    • JavaEE容器:JavaEE容器(如Tomcat、WebLogic、WebSphere等)通常会使用自定义的类加载器来加载应用程序的类,以实现应用程序的隔离和独立性。这些容器会打破双亲委派机制,使用自定义的类加载器来加载应用程序的类。
    • OSGi框架:OSGi(Open Service Gateway Initiative)是一种动态模块化的Java平台,它提供了一套机制来管理和加载模块。在OSGi中,每个模块都有自己的类加载器,可以独立加载和管理类,从而打破双亲委派机制。
    • Java SPI机制:Java SPI(Service Provider Interface)是一种标准的服务发现机制,在SPI中,服务的实现类通过在META-INF/services目录下的配置文件中声明,而不是通过类路径来查找。通过SPI机制,可以实现在不同的类加载器中加载不同的服务实现类,从而打破双亲委派机制。
    • 动态代理框架:一些动态代理框架,如CGLIB、Byte Buddy等,可以在运行时生成代理类,并在代理类中实现特定的逻辑。这些框架通常会使用自定义的类加载器来加载生成的代理类,从而打破双亲委派机制

    总结#

    类加载就是将Java类的字节码文件(.class文件)加载到内存中,并转换为JVM中的Class对象的过程。以便JVM可以执行该类的代码

    类加载器可以大致划分为以下三类:

    启动类加载器: Bootstrap ClassLoader,负责加载存放在JDK\jre\lib(JDK代表JDK的安装目录,下同)下,或被-Xbootclasspath参数指定的路径中的,并且能被虚拟机识别的类库(如rt.jar,所有的java.*开头的类均被Bootstrap ClassLoader加载)。启动类加载器是无法被Java程序直接引用的。

    扩展类加载器: Extension ClassLoader,该加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载JDK\jre\lib\ext目录中,或者由java.ext.dirs系统变量指定的路径中的所有类库(如javax.*开头的类),开发者可以直接使用扩展类加载器。

    应用程序类加载器: Application ClassLoader,该类加载器由sun.misc.Launcher$AppClassLoader来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

    类加载后的数据保存在Java虚拟机的方法区中,这个区域用于存储类的结构信息、静态变量、常量池等数据。(每个类加载器都有自己的命名空间,因此即使两个类的类名相同,如果它们是由不同的类加载器加载的,那么它们仍然被视为不同的类)

    类加载会遵循双亲委派原则,优先委托父类来加载。这样可以防止类的重复加载,也可以避免不同类加载器加载同名类时的冲突问题,保证了类的唯一性

    当前类加载器(Current classloader)

    • 每个类都会使用自己的类加载器(即加载自身的类加载器)来去加载其他类(指的是所依赖的类)。
    • 如果classX引用了classY,那么ClassX的类加载器就会去加载classY(前提是classY尚未被加载)。

    线程上下文加载器

    线程上下文加载器它允许线程在运行时动态地改变其类加载器。线程上下文加载器通常使用Thread类的setContextClassLoader和getContextClassLoader方法来设置和获取。通过这些方法,可以在运行时动态地改变线程的上下文加载器,以适应不同的类加载器层次结构

    • 线程上下文类加载器是从JDK 1.2开始引入的,类Thread中的getContextClassLoader()与setContextClassLoader(ClassLoader)分别用来获取和设置上下文类加载器
    • 如果没有通过setContextClassLoader(ClassLoader cl)进行设置的话,线程将继承其父线程的上下文类加载器。
    • Java应用运行时的初始线程的上下文类加载器是系统类加载器。在线程中运行的代码可以通过该类加载器来加载类与资源。
    • 要非常明确,该加载器是动态的,在运行期间才有的类加载器。
    • 在运行期间动态的加载需要的类,是可以跨越不同的类加载器边界的。

    类加载有个规则:如果一个类由类加载器A加载,那么这个类的依赖类也是由「相同的类加载器」加载

    在JDBC中,是使用DriverManager.getConnection()获取连接,DriverManager在java.sql包下,显然用bootstrap加载器加载,这是无法加载不同厂家的实现类,这时就有用到线程上下文加载器进行加载,一般在应用系统中线程上下文加载器都是应用加载器

    Q&A#

    双亲委派原则的优点

    1. 避免类的重复加载:由于父类加载器优先加载类,可以避免同一个类被多个类加载器加载,从而节省内存空间。
    2. 安全性:通过双亲委派机制,可以确保核心API不会被篡改,保证了Java核心类库的安全和稳定性。
    3. 避免冲突:通过双亲委派机制,可以避免不同类加载器加载同名类时的冲突问题,保证了类的唯一性。
    4. 规范性:双亲委派原则是一种规范和约定,符合了统一的规范设计,使得类加载机制更加清晰和规范。

    什么时候需要打破双亲委派原则

    1. 实现类加载隔离:有些框架或应用可能需要在同一个虚拟机中加载多个版本的相同类,或者需要加载不同来源的类(比如数据库、网络、甚至内存中的字节码)。在这种情况下,就需要打破双亲委派原则,自定义类加载器来实现类加载的隔离。
    2. 热部署和动态更新:在某些应用场景下,需要实现热部署和动态更新,即在应用程序运行时动态加载新的类。为了实现这一功能,通常需要打破双亲委派原则,自定义类加载器来实现类的动态加载。
    3. 加载非标准的类文件:有时候需要从非标准的地方加载类文件,比如数据库、网络甚至是内存中的字节码。这种情况下也需要打破双亲委派原则,自定义类加载器来实现从非标准地方加载类文件。

    参考文章:

    https://pdai.tech/md/java/jvm/java-jvm-classload.html
    https://www.51cto.com/article/771397.html
    https://www.zhihu.com/question/466696410

posted @   糯米๓  阅读(11)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
more_horiz
keyboard_arrow_up dark_mode palette
选择主题
menu
点击右上角即可分享
微信分享提示