DataFrame 学习笔记
由数组字典构造DataFrame
from pandas import Series,DataFrame
import numpy as np
import pandas as pd
data={'state':['ohio','ohio','ohio','Nevada','Nevada'],
'year':[2000,2001,2002,2001,2002],
'pop':[1.5,1.7,3.6,2.4,2.9]}
frame=DataFrame(data)
Out[103]:
pop state year
0 1.5 ohio 2000
1 1.7 ohio 2001
2 3.6 ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
改变序列顺序
DataFrame(data,columns=['year','state','pop'])
Out[104]:
year state pop
0 2000 ohio 1.5
1 2001 ohio 1.7
2 2002 ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
改变标签,增加列没有数据,显示NaN
frame2=DataFrame(data,columns=['year','state','pop','debt'], index=['one','two','three','four','five'])
frame2
Out[108]:
year state pop debt
one 2000 ohio 1.5 NaN
two 2001 ohio 1.7 NaN
three 2002 ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
frame2.columns
Out[111]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
frame2.state=frame2[‘state’] 用法相同
frame2.state
Out[112]:
one ohio
two ohio
three ohio
four Nevada
five Nevada
Name: state, dtype: object
frame2['state']
Out[113]:
one ohio
two ohio
three ohio
four Nevada
five Nevada
Name: state, dtype: object
debt赋值
frame2['debt']=16.5
frame2
Out[115]:
year state pop debt
one 2000 ohio 1.5 16.5
two 2001 ohio 1.7 16.5
three 2002 ohio 3.6 16.5
four 2001 Nevada 2.4 16.5
five 2002 Nevada 2.9 16.5
frame2['debt']=np.arange(5)
frame2.debt=np.arange(5)
frame2
Out[120]:
year state pop debt
one 2000 ohio 1.5 0
two 2001 ohio 1.7 1
three 2002 ohio 3.6 2
four 2001 Nevada 2.4 3
five 2002 Nevada 2.9 4
val=Series([-1.2,-1.5,-1.7],index=['two','four','five'])
frame2['debt']=val
frame2
Out[127]:
year state pop debt
one 2000 ohio 1.5 NaN
two 2001 ohio 1.7 -1.2
three 2002 ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
frame2['eastern']=frame2.state=='ohio'
frame2
Out[129]:
year state pop debt eastern
one 2000 ohio 1.5 NaN True
two 2001 ohio 1.7 -1.2 True
three 2002 ohio 3.6 NaN True
four 2001 Nevada 2.4 -1.5 False
five 2002 Nevada 2.9 -1.7 False
删除列
del frame2['eastern']
frame2
Out[131]:
year state pop debt
one 2000 ohio 1.5 NaN
two 2001 ohio 1.7 -1.2
three 2002 ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
frame2.columns
Out[132]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)