基于xgboost 的贷款风险预测
现在我们用传说中的xgboost 对这个数据集进行计算
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 19 13:19:26 2017
@author: luogan
"""
import pandas as pd
df = pd.read_csv('loans.csv')
from sklearn.preprocessing import LabelEncoder
from collections import defaultdict
d = defaultdict(LabelEncoder)
dff =df.apply(lambda df: d[df.name].fit_transform(df))
dff.to_excel('dff.xls')
import pandas as pd
import numpy as np
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import cross_validation, metrics #Additional scklearn functions
from sklearn.grid_search import GridSearchCV #Perforing grid search
import matplotlib.pylab as plt
#%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 12, 4
train = pd.read_excel('dff.xls')
target = 'safe_loans'
IDcol = 'id'
def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50):
if useTrainCV:
xgb_param = alg.get_xgb_params()
xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values)
cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
metrics='auc', early_stopping_rounds=early_stopping_rounds)
alg.set_params(n_estimators=cvresult.shape[0])
#Fit the algorithm on the data
alg.fit(dtrain[predictors], dtrain['safe_loans'],eval_metric='auc')
#Predict training set:
dtrain_predictions = alg.predict(dtrain[predictors])
dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]
from pandas import DataFrame
'''
gg=DataFrame(dtrain_predictions)
gg.to_excel('dtrain_predictions.xls')
tt=DataFrame(dtrain_predprob)
tt.to_excel('dtrain_predprob.xls')
'''
print(alg)
#Print model report:
print ("\nModel Report")
print ("Accuracy : %.4g" % metrics.accuracy_score(dtrain['safe_loans'].values, dtrain_predictions))
print ("AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['safe_loans'], dtrain_predprob))
ww=(alg.feature_importances_)
print(ww)
feat_imp = pd.Series(ww).sort_values(ascending=False)
#print(feat_imp)
feat_imp.plot(kind='bar', title='Feature Importances')
plt.ylabel('Feature Importance Score')
"""
model=alg
featureImportance = model.get_score()
features = pd.DataFrame()
features['features'] = featureImportance.keys()
features['importance'] = featureImportance.values()
features.sort_values(by=['importance'],ascending=False,inplace=True)
fig,ax= plt.subplots()
fig.set_size_inches(20,10)
plt.xticks(rotation=60)
#sn.barplot(data=features.head(30),x="features",y="importance",ax=ax,orient="v")
"""
#Choose all predictors except target & IDcols
predictors = [x for x in train.columns if x not in [target, IDcol]]
xgb1 = XGBClassifier(
learning_rate =0.1,
n_estimators=1000,
max_depth=18,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective= 'binary:logistic',
nthread=4,
scale_pos_weight=1,
seed=27)
modelfit(xgb1, train, predictors)
Model Report
Accuracy : 0.9533
AUC Score (Train): 0.990971
正确率95%,甩决策树和BP网几条街啊!
可见传说中的xgboost果然厉害,难怪工业实践中xgboost 应用如痴的广泛
下图显示了每个 feature的重要性,里面有两个文件,请运行xgboost.py
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?