"""
Created on Wed Dec 13 18:08:20 2017
@author: Administrator
"""
from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import date2num
import datetime
import numpy as np
from pandas import DataFrame
from numpy import row_stack,column_stack
import math
import talib
import numpy as np
import pandas as pd
from pandas import Series
import seaborn as sns
sns.set_style('white')
import scipy as sp
import scipy.optimize
import datetime
import calendar
import matplotlib.pyplot as plt
from matplotlib.finance import candlestick2_ochl
data=ts.get_hist_data('601857',start='2016-06-15',end='2017-12-12')
data=data.sort_index(ascending=True)
def plotKLine(open,close,high,low,tech):
fig = plt.figure(figsize=(30, 15))
y=len(close)
date = np.linspace(0,y,y)
candleAr = []
ax1 = plt.subplot2grid((10,4),(0,0),rowspan=5,colspan=4)
candlestick2_ochl(ax1,open,close,high,low,width=1,colorup='r',colordown='g', alpha=0.75)
ax2 = plt.subplot2grid((10,4),(5,0),rowspan=4,colspan=4,sharex=ax1)
if 'ATR' in tech.keys():
ax2.plot(date, tech['ATR'],'-b')
if 'ad_ATR' in tech.keys():
ax2.plot(date, tech['ad_ATR'],'-r')
if 'my_ATR' in tech.keys():
ax2.plot(date, tech['my_ATR'],'-m')
if 'short_ATR' in tech.keys():
ax2.plot(date, tech_1['short_ATR'],'-b')
if 'long_ATR' in tech.keys():
ax2.plot(date, tech_1['long_ATR'],'-r')
if 'close' in tech.keys():
ax2.plot(date,tech_2['close'],'-b')
if 'upper' in tech.keys():
ax2.plot(date,tech_2['upper'],'-r')
if 'lower' in tech.keys():
ax2.plot(date,tech_2['lower'],'-r')
def get_myATR(data):
df = pd.DataFrame()
df['HL'] = abs(data['high'] - data['low'])
df['HCL'] = abs(data['high'] - data['preclose'])
df['CLL'] = abs(data['preclose'] - data['low'])
df['my_ATR'] = pd.rolling_mean(df.max(axis=1),window=10)
return df['my_ATR'].values
a = list(data['close'][:-1])
a.insert(0,0)
data['preclose']=a
data = data[data.preclose>0]
tech={}
open = data['open'].values
high = data['high'].values
low = data['low'].values
close = data['close'].values
preclose = data['preclose'].values
tech['ad_ATR']= talib.ATR(high,low,preclose,10)
tech['ATR'] = talib.ATR(high,low,close,10)
tech['my_ATR'] = get_myATR(data)
plotKLine(open,close,high,low,tech)
tech_1 = {}
tech_1['short_ATR'] = talib.ATR(high,low,close,10)
tech_1['long_ATR'] = talib.ATR(high,low,close,20)
plotKLine(open,close,high,low,tech_1)
df = pd.DataFrame()
df['close'] = data['close']
df['ATR'] = talib.ATR(high,low,close,10)
df['mavg'] = pd.rolling_mean(df.close,window=10)
df['upper'] = df['mavg'] + 2*df['ATR']
df['lower'] = df['mavg'] - 2*df['ATR']
tech_2 = {}
tech_2['close'] = data['close'].values
tech_2['upper'] = df['upper'].values
tech_2['lower'] = df['lower'].values
plotKLine(open,close,high,low,tech_2)

【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)