python talib(一)

# -*- coding: utf-8 -*-
"""
Created on Wed Dec 13 18:08:20 2017

@author: Administrator
"""

from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
#import matplotlib
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import date2num
import datetime
import numpy as np
from pandas import DataFrame
from numpy import row_stack,column_stack

import math
import talib

import numpy as np
import pandas as pd
from pandas import Series
import seaborn as sns
sns.set_style('white')

import scipy as sp
import scipy.optimize

import datetime
import calendar

import matplotlib.pyplot as plt
from matplotlib.finance import candlestick2_ochl

data=ts.get_hist_data('601857',start='2016-06-15',end='2017-12-12')
data=data.sort_index(ascending=True)


#画图
def plotKLine(open,close,high,low,tech):

    fig = plt.figure(figsize=(30, 15))
    y=len(close)
    date = np.linspace(0,y,y)
    candleAr = []
    ax1 = plt.subplot2grid((10,4),(0,0),rowspan=5,colspan=4)
    candlestick2_ochl(ax1,open,close,high,low,width=1,colorup='r',colordown='g', alpha=0.75)
    ax2 = plt.subplot2grid((10,4),(5,0),rowspan=4,colspan=4,sharex=ax1)
    if 'ATR' in tech.keys():
        ax2.plot(date, tech['ATR'],'-b')
    if 'ad_ATR' in tech.keys():
        ax2.plot(date, tech['ad_ATR'],'-r')
    if 'my_ATR' in tech.keys():
        ax2.plot(date, tech['my_ATR'],'-m')
    if 'short_ATR' in tech.keys():
        ax2.plot(date, tech_1['short_ATR'],'-b')
    if 'long_ATR' in tech.keys():
        ax2.plot(date, tech_1['long_ATR'],'-r')
    if 'close' in tech.keys():
        ax2.plot(date,tech_2['close'],'-b')
    if 'upper' in tech.keys():
        ax2.plot(date,tech_2['upper'],'-r')
    if 'lower' in tech.keys():
        ax2.plot(date,tech_2['lower'],'-r')

#按公式计算ATR        
def get_myATR(data):
    df = pd.DataFrame()
    df['HL'] = abs(data['high'] - data['low'])
    df['HCL'] = abs(data['high'] - data['preclose'])
    df['CLL'] = abs(data['preclose'] - data['low'])
    df['my_ATR'] = pd.rolling_mean(df.max(axis=1),window=10)
    return df['my_ATR'].values

a = list(data['close'][:-1])
a.insert(0,0)
data['preclose']=a
data = data[data.preclose>0]

tech={}
open = data['open'].values
high = data['high'].values
low = data['low'].values
close = data['close'].values
preclose = data['preclose'].values
tech['ad_ATR']= talib.ATR(high,low,preclose,10)
tech['ATR'] = talib.ATR(high,low,close,10)
tech['my_ATR'] =  get_myATR(data)



plotKLine(open,close,high,low,tech)


#ATR指标
tech_1 = {}
tech_1['short_ATR'] = talib.ATR(high,low,close,10)
tech_1['long_ATR'] = talib.ATR(high,low,close,20)
plotKLine(open,close,high,low,tech_1)


#通道突破交易系统

df = pd.DataFrame()
df['close'] = data['close']
df['ATR'] = talib.ATR(high,low,close,10)

#df['my_ATR'] = pd.rolling_mean(df.max(axis=1),window=10)
df['mavg'] = pd.rolling_mean(df.close,window=10)
df['upper'] = df['mavg'] + 2*df['ATR']
df['lower'] = df['mavg'] - 2*df['ATR']

tech_2 = {}
tech_2['close'] = data['close'].values
tech_2['upper'] = df['upper'].values
tech_2['lower'] = df['lower'].values
plotKLine(open,close,high,low,tech_2)

这里写图片描述

posted @   luoganttcc  阅读(116)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示