python 多项式拟合
import numpy as np
import matplotlib.pyplot as plt
#x的个数决定了样本量
x = np.arange(-1,1,0.02)
#y为理想函数
y = 2*np.sin(x*2.3)+0.5*x**3
#y1为离散的拟合数据
y1 = y+0.5*(np.random.rand(len(x))-0.5)
z1 = np.polyfit(x, y, 6)
# 生成多项式对象
p1 = np.poly1d(z1)
pp1=p1(x)
##################################
#plt.plot(x,y,color='g',linestyle='-',marker='',label=u'理想曲线')
plt.plot(x,y1,color='m',linestyle='',marker='o',label=u'拟合数据')
plt.plot(x,pp1,color='b',linestyle='-',marker='.',label=u"拟合曲线")
# 把拟合的曲线在这里画出来
plt.legend(loc='upper left')
plt.show()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)