python矩阵分解
矩阵的奇异值分解
import numpy as np
aa= np.array([[1, 1], [1, -2], [2, 1]])
bb=np.linalg.svd(aa)
print(bb)
(array([[ -5.34522484e-01, -1.11022302e-16, -8.45154255e-01],
[ 2.67261242e-01, -9.48683298e-01, -1.69030851e-01],
[ -8.01783726e-01, -3.16227766e-01, 5.07092553e-01]]), array([ 2.64575131, 2.23606798]), array([[-0.70710678, -0.70710678],
[-0.70710678, 0.70710678]]))
矩阵的LU分解
m=np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
import scipy
df=scipy.linalg.lu(m, permute_l=True)
L=df[0]
U=df[1]
L
Out[129]:
array([[ 0.14285714, 1. , 0. ],
[ 0.57142857, 0.5 , 1. ],
[ 1. , 0. , 0. ]])
U
Out[130]:
array([[ 7.00000000e+00, 8.00000000e+00, 9.00000000e+00],
[ 0.00000000e+00, 8.57142857e-01, 1.71428571e+00],
[ 0.00000000e+00, 0.00000000e+00, 1.11022302e-16]])
L@U
Out[131]:
array([[ 1., 2., 3.],
[ 4., 5., 6.],
[ 7., 8., 9.]])
矩阵的Cholesky分解
import scipy
import numpy
m=numpy.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
qr = scipy.linalg.qr(m)
qr[0]@qr[1]
array([[ 1., 2., 3.],
[ 4., 5., 6.],
[ 7., 8., 9.]])
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)