支持向量回归 svr
from sklearn import svm
X = [[0, 0], [1, 1]]
y = [0, 1]
#建立支持向量分类模型
clf = svm.SVC()
#拟合训练数据,得到训练模型参数
clf.fit(X, y)
#对测试点[2., 2.], [3., 3.]预测
res = clf.predict([[2., 2.],[3., 3.]])
#输出预测结果值
print (res)
from sklearn import svm
X = [[0, 0], [1, 1]]
y = [0, 1]
#建立支持向量分类模型
clf = svm.SVC()
#拟合训练数据,得到训练模型参数
clf.fit(X, y)
#对测试点[2., 2.], [3., 3.]预测
res = clf.predict([[2., 2.],[3., 3.]])
#输出预测结果值
print (res)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)