pyspark SparseVector 词向量


from pyspark.mllib.linalg import SparseVector
from collections import Counter

from pyspark import SparkContext

if __name__ == "__main__":

    sc = SparkContext('local', 'term_doc')
    corpus = sc.parallelize([
    "It is the east, and Juliet is the sun.",
    "A dish fit for the gods.",
    "Brevity is the soul of wit."])

    tokens = corpus.map(lambda raw_text: raw_text.split()).cache()   
    local_vocab_map = tokens.flatMap(lambda token: token).distinct().zipWithIndex().collectAsMap()

    vocab_map = sc.broadcast(local_vocab_map)
    vocab_size = sc.broadcast(len(local_vocab_map))

    term_document_matrix = tokens \
                         .map(Counter) \
                         .map(lambda counts: {vocab_map.value[token]: float(counts[token]) for token in counts}) \
                         .map(lambda index_counts: SparseVector(vocab_size.value, index_counts))

    for doc in term_document_matrix.collect():
        print( doc)
(16,[0,1,2,3,4,5,6],[1.0,2.0,2.0,1.0,1.0,1.0,1.0])
(16,[2,7,8,9,10,11],[1.0,1.0,1.0,1.0,1.0,1.0])
(16,[1,2,12,13,14,15],[1.0,1.0,1.0,1.0,1.0,1.0])
posted @ 2022-08-19 22:58  luoganttcc  阅读(2)  评论(0编辑  收藏  举报