deep learning with keras (一) 用CNN 对 cifar 分类

from keras.datasets import cifar10
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import SGD, Adam, RMSprop

import matplotlib.pyplot as plt

#from quiver_engine import server
# CIFAR_10 is a set of 60K images 32x32 pixels on 3 channels
IMG_CHANNELS = 3
IMG_ROWS = 32
IMG_COLS = 32

#constant
BATCH_SIZE = 128
NB_EPOCH = 100
NB_CLASSES = 10
VERBOSE = 1
VALIDATION_SPLIT = 0.2
OPTIM = RMSprop()


#load dataset
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert to categorical
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES) 

# float and normalization
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255

# network

model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
                 input_shape=(IMG_ROWS, IMG_COLS, IMG_CHANNELS)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))

model.summary()

# train
#optim = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=OPTIM,
    metrics=['accuracy'])

history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE,
    epochs=NB_EPOCH, validation_split=VALIDATION_SPLIT, 
    verbose=VERBOSE)

print('Testing...')
score = model.evaluate(X_test, Y_test,
                     batch_size=BATCH_SIZE, verbose=VERBOSE)
print("\nTest score:", score[0])
print('Test accuracy:', score[1])

#server.launch(model)


#save model
model_json = model.to_json()
open('cifar10_architecture.json', 'w').write(model_json)
model.save_weights('cifar10_weights.h5', overwrite=True)


# list all data in history
print(history.history.keys())
# summarize history for accuracy
#plt.plot(mo)
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

这里写图片描述这里写图片描述

posted @ 2022-08-19 22:58  luoganttcc  阅读(2)  评论(0编辑  收藏  举报