这写股票明天要涨,Python 量化分析(五) 潜力指数选股票法

本人通过过著名的金融库talib构造时间序列的数学模型,分别计算中国3518只股票的潜力指数,分析得出未来,即5月二日开盘时,极大概率上涨的有282只,大概率上涨的有577只:

在未来如下股票将上涨:

1. 002027
1. 002546
2. 600552
3. 000417
4. 002319
5. 601002
6. 000417
7. 002319
8. 601002
在未来如下股票将下跌:

1. 601185
2. 601016
3. 002692
4. 002406

# -*- coding: utf-8 -*-
"""
Created on Thu Dec 14 15:26:31 2017

@author: 量化之王
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May  2 17:28:50 2018

@author: luogan
"""

import pymongo
import pandas

import pandas as pd
import matplotlib.pyplot as plt  
import numpy as np 
import pylab as pl
import datetime
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc

from matplotlib.pylab import date2num
#import potential

import talib
from dateutil.parser import parse
import tushare as ts

client1 = pymongo.MongoClient('192.168.10.182',27017)
db1 = client1.stock.potential


'''        
def before_month_lastday(ti):
    from dateutil.parser import parse
    today=parse(str(ti))

    #first = datetime.date(day=1, month=today.month, year=today.year)

    lastMonth = today - datetime.timedelta(days=0)

    def plus(k):
        if k<10:
            return '0'+str(k)
        else:
            return str(k)
    y=lastMonth.year
    m=lastMonth.month
    d=lastMonth.day
    #day=calendar.monthrange(y,m)[1]

    cc=str(y)+plus(m)+plus(d)
    #bb=parse(cc)
    #pacific = pytz.timezone('Asia/Shanghai')
    #return pacific.localize(bb) 
    return int(cc)      
'''


def potential_index(tl):

    #df=ts.get_hist_data(name,start=bf,end=now)
    df=ts.get_hist_data(tl[0],start=tl[1],end=tl[2])

    if str(type(df))!="<class 'NoneType'>":

        if df.shape[0]>10:


            date=df.index
            date1=list(map(parse,date))

            df['date']=date1
            df=df.sort_values(by='date')


            print('df=',df)
            df.index=list(range(df.shape[0]))

            #df[df['volume']==0]=np.nan

            #print('df=',df)

            """
            def myMACD(price, fastperiod=12, slowperiod=26, signalperiod=9):
                ewma12 = pd.ewma(price,span=fastperiod)
                ewma60 = pd.ewma(price,span=slowperiod)
                dif = ewma12-ewma60
                dea = pd.ewma(dif,span=signalperiod)
                bar = (dif-dea) #有些地方的bar = (dif-dea)*2,但是talib中MACD的计算是bar = (dif-dea)*1
                return dif,dea,bar
            """

            #print(df['close'].values)

            macd, signal, hist = talib.MACD(df['close'].values, fastperiod=6, slowperiod=12, signalperiod=9)

            """
            #mydif,mydea,mybar = myMACD(df['close'].values, fastperiod=12, slowperiod=26, signalperiod=9)

            fig = plt.figure(figsize=[10,5])
            plt.plot(df.index,macd,label='macd dif')
            plt.plot(df.index,signal,label='signal dea')
            plt.plot(df.index,hist,label='hist bar')
            #plt.plot(df.index,mydea,label='my dea')
            #plt.plot(df.index,mybar,label='my bar')
            plt.legend(loc='best')
            """
            close = [float(x) for x in df['close']]

            def macscore( hist):

                span=len(macd)-1

                h1=hist[span]
                if  h1>0:
                    return 1
                else:
                    return 0




            def RSI(df):

                df['RSI']=talib.RSI(np.array(close), timeperiod=12) 
                aa=list(df['RSI'])

                b=aa[::-1]
                #print(b)
                if b[0]>50:
                    return 0
                else:
                    return 1

            def monment(df):
                df['MOM']=talib.MOM(np.array(close), timeperiod=5)
                aa=list(df['MOM'])
                b=aa[::-1]
                if b[0]>0:
                    return 1
                else:
                    return 0



            def polyfit(close,k,pl):
                #print(close)
                near_six=close[len(close)-pl:len(close)]
                xlist=list(range(pl))
                bbz1 = np.polyfit(xlist, near_six,k)
                # 生成多项式对象{
                bbp1 = np.poly1d(bbz1)
                f5=bbp1(pl-1)
                f6=bbp1(pl)
                if f6>f5:
                    return 1
                else:
                    return 0

            score=2*RSI(df)+2*monment(df)+3*polyfit(close,1,2)+2*polyfit(close,1,3)+1*polyfit(close,1,4)+2*polyfit(close,3,5)+2*macscore( hist)

            poindex=score/14
            vv=int(poindex*100)
            db1.save({'name':tl[0],'potential':vv})
            #return vv*1.0






#mm=potential_index(code[100])

'''
for name in code:


    mm=potential_index(name)
    print(name,mm)
    timm=datetime.datetime.now()

'''            
ak=ts.get_stock_basics()

code=list(ak.index)



def front_step_time(day):
    now = datetime.datetime.now()
    front = now - datetime.timedelta(days=day)
    d1 = front.strftime('%Y-%m-%d')
    #return int(d1)
    return d1

now=front_step_time(0)

bf=front_step_time(720)

sheet=pd.DataFrame()
sheet['code']=code

sheet['bf']=bf
sheet['sta']=now
#name='600354'
#b1=potential_vocanol(name,'2017-11-14','2018-02-14')
#b2=potential_vocanol(name,'2018-02-14','2018-04-13')
client1 = pymongo.MongoClient('192.168.10.182',27017)
db1 = client1.stock.potential

import time
from multiprocessing import Pool
import numpy as np

if __name__ == "__main__" :
  startTime = time.time()
  testFL =sheet.values
  #ll=code
  pool = Pool(10)#可以同时跑10个进程
  pool.map(potential_index,testFL)
  pool.close()
  pool.join()   
  endTime = time.time()
  print ("time :", endTime - startTime)
{ 
    "_id" : ObjectId("5ae84623a39ad471dbdd0e8a"), 
    "name" : "000043", 
    "potential" : NumberInt(100)
}
{ 
    "_id" : ObjectId("5ae84623a39ad471dadd0e87"), 
    "name" : "002689", 
    "potential" : NumberInt(100)
}
{ 
    "_id" : ObjectId("5ae84623a39ad471d5dd0e8d"), 
    "name" : "601107", 
    "potential" : NumberInt(100)
}
{ 
    "_id" : ObjectId("5ae84624a39ad471dbdd0e8d"), 
    "name" : "002660", 
    "potential" : NumberInt(100)
}
{ 
    "_id" : ObjectId("5ae84624a39ad471dcdd0e95"), 
    "name" : "300497", 
    "potential" : NumberInt(100)
}
{ 
    "_id" : ObjectId("5ae84624a39ad471d7dd0e8c"), 
    "name" : "600353", 
    "potential" : NumberInt(100)
}
posted @ 2022-08-19 22:58  luoganttcc  阅读(9)  评论(0编辑  收藏  举报