Python量化(八)下影线选股法

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May  5 12:43:52 2018

@author: luogan
"""

# -*- coding: utf-8 -*-
"""
Created on Thu Dec 14 15:26:31 2017

@author: 量化之王
"""

import pymongo
import pandas

import pandas as pd
import matplotlib.pyplot as plt  
import numpy as np 
import pylab as pl
import datetime
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc

from matplotlib.pylab import date2num

import talib
from dateutil.parser import parse
import tushare as ts

client1 = pymongo.MongoClient('192.168.10.182',27017)
db1 = client1.stock.low_close



def before_month_lastday(ti,k):
    from dateutil.parser import parse
    today=parse(str(ti))

    #first = datetime.date(day=1, month=today.month, year=today.year)

    lastMonth = today - datetime.timedelta(days=k)

    def plus(k):
        if k<10:
            return '0'+str(k)
        else:
            return str(k)
    y=lastMonth.year
    m=lastMonth.month
    d=lastMonth.day
    #day=calendar.monthrange(y,m)[1]

    cc=str(y)+plus(m)+plus(d)
    #bb=parse(cc)
    #pacific = pytz.timezone('Asia/Shanghai')
    #return pacific.localize(bb) 
    return int(cc)      


def polyfit(c,k):
    #print(close)

    xlist=list(range(len(c)))
    bbz1 = np.polyfit(xlist, c,k)
    # 生成多项式对象{
    #bbp1 = np.poly1d(bbz1)
    #f5=bbp1(pl-1)
    #f6=bbp1(pl)
    return bbz1[0]

def potential_index(tl):

    #df=ts.get_hist_data(name,start=bf,end=now)
    df=ts.get_hist_data(tl[0],start=tl[1],end=tl[2])



    if str(type(df))!="<class 'NoneType'>":

        if df.shape[0]>250:

            date=df.index
            date1=list(map(parse,date))

            df['date']=date1
            df=df.sort_values(by='date')

            #print('df=',df)

            #df=ts.get_k_data('002230',start='2015-01-12',end='2018-04-30')
            #提取收盘价
            closed=df['close'].values
            opend=df['open'].values

            low=df['low'].values
            #获取均线的数据,通过timeperiod参数来分别获取 5,10,20 日均线的数据。
            #ma5=talib.SMA(closed,timeperiod=30)
            #ma10=talib.SMA(closed,timeperiod=60)
            #ma250=talib.SMA(closed,timeperiod=250)
            p=closed[-1]
            o=opend[-1]

            opp=min(p,o)
            n=low[-1]
            #print('p=',p)
            #print('n=',n)
            ra=(opp-n)/opp

            #print('kk=',kk)
            #print('ra=',ra)
            if ra>=0.05:



                #print('kk=',kk)
                print('ra=',ra)

                print('name',tl[0])

                #db1.insert_one({'name':tl[0],'ratio':ra})
                #db1.save({'name':tl[0]})


                tt=before_month_lastday(tl[2],0)

                #db1.save({'name':tl[0],'potential':vv})
                #return vv*1.0

                db1.replace_one(

                    {"name":tl[0],"date":tt},

                    {  "name":tl[0],"date":tt,'ratio':round(ra,2)
                            },True
                    )

                print('$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$')
                #return vv*1.0






#mm=potential_index(code[100])


ak=ts.get_stock_basics()

code=list(ak.index)



def front_step_time(day):
    now = datetime.datetime.now()
    front = now - datetime.timedelta(days=day)
    d1 = front.strftime('%Y-%m-%d')
    #return int(d1)
    return d1

now=front_step_time(0)

bf=front_step_time(720)

sheet=pd.DataFrame()
sheet['code']=code

sheet['bf']=bf
sheet['sta']=now
#name='600354'
#b1=potential_vocanol(name,'2017-11-14','2018-02-14')
#b2=potential_vocanol(name,'2018-02-14','2018-04-13')


import time
from multiprocessing import Pool
import numpy as np

te =sheet.values

''' 
for name in te:


    mm=potential_index(name)
    #print(name,mm)


'''
if __name__ == "__main__" :
  startTime = time.time()
  testFL =sheet.values
  #ll=code
  pool = Pool(20)#可以同时跑10个进程
  pool.map(potential_index,testFL)
  pool.close()
  pool.join()   
  endTime = time.time()
  print ("time :", endTime - startTime)
{ 
    "_id" : ObjectId("5aed3d531815c4ffea37f824"), 
    "name" : "300519", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d571815c4ffea37f835"), 
    "name" : "002806", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d5e1815c4ffea37f850"), 
    "name" : "600753", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.08
}
{ 
    "_id" : ObjectId("5aed3d5e1815c4ffea37f854"), 
    "name" : "002047", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d621815c4ffea37f865"), 
    "name" : "002726", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.08
}
{ 
    "_id" : ObjectId("5aed3d661815c4ffea37f878"), 
    "name" : "002592", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.08
}
{ 
    "_id" : ObjectId("5aed3d661815c4ffea37f87a"), 
    "name" : "002584", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.1
}
{ 
    "_id" : ObjectId("5aed3d671815c4ffea37f87e"), 
    "name" : "002161", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d801815c4ffea37f8e1"), 
    "name" : "002691", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.09
}
posted @   luoganttcc  阅读(23)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
点击右上角即可分享
微信分享提示