Python量化(八)下影线选股法

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May  5 12:43:52 2018

@author: luogan
"""

# -*- coding: utf-8 -*-
"""
Created on Thu Dec 14 15:26:31 2017

@author: 量化之王
"""

import pymongo
import pandas

import pandas as pd
import matplotlib.pyplot as plt  
import numpy as np 
import pylab as pl
import datetime
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc

from matplotlib.pylab import date2num

import talib
from dateutil.parser import parse
import tushare as ts

client1 = pymongo.MongoClient('192.168.10.182',27017)
db1 = client1.stock.low_close



def before_month_lastday(ti,k):
    from dateutil.parser import parse
    today=parse(str(ti))

    #first = datetime.date(day=1, month=today.month, year=today.year)

    lastMonth = today - datetime.timedelta(days=k)

    def plus(k):
        if k<10:
            return '0'+str(k)
        else:
            return str(k)
    y=lastMonth.year
    m=lastMonth.month
    d=lastMonth.day
    #day=calendar.monthrange(y,m)[1]

    cc=str(y)+plus(m)+plus(d)
    #bb=parse(cc)
    #pacific = pytz.timezone('Asia/Shanghai')
    #return pacific.localize(bb) 
    return int(cc)      


def polyfit(c,k):
    #print(close)

    xlist=list(range(len(c)))
    bbz1 = np.polyfit(xlist, c,k)
    # 生成多项式对象{
    #bbp1 = np.poly1d(bbz1)
    #f5=bbp1(pl-1)
    #f6=bbp1(pl)
    return bbz1[0]

def potential_index(tl):

    #df=ts.get_hist_data(name,start=bf,end=now)
    df=ts.get_hist_data(tl[0],start=tl[1],end=tl[2])



    if str(type(df))!="<class 'NoneType'>":

        if df.shape[0]>250:

            date=df.index
            date1=list(map(parse,date))

            df['date']=date1
            df=df.sort_values(by='date')

            #print('df=',df)

            #df=ts.get_k_data('002230',start='2015-01-12',end='2018-04-30')
            #提取收盘价
            closed=df['close'].values
            opend=df['open'].values

            low=df['low'].values
            #获取均线的数据,通过timeperiod参数来分别获取 5,10,20 日均线的数据。
            #ma5=talib.SMA(closed,timeperiod=30)
            #ma10=talib.SMA(closed,timeperiod=60)
            #ma250=talib.SMA(closed,timeperiod=250)
            p=closed[-1]
            o=opend[-1]

            opp=min(p,o)
            n=low[-1]
            #print('p=',p)
            #print('n=',n)
            ra=(opp-n)/opp

            #print('kk=',kk)
            #print('ra=',ra)
            if ra>=0.05:



                #print('kk=',kk)
                print('ra=',ra)

                print('name',tl[0])

                #db1.insert_one({'name':tl[0],'ratio':ra})
                #db1.save({'name':tl[0]})


                tt=before_month_lastday(tl[2],0)

                #db1.save({'name':tl[0],'potential':vv})
                #return vv*1.0

                db1.replace_one(

                    {"name":tl[0],"date":tt},

                    {  "name":tl[0],"date":tt,'ratio':round(ra,2)
                            },True
                    )

                print('$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$')
                #return vv*1.0






#mm=potential_index(code[100])


ak=ts.get_stock_basics()

code=list(ak.index)



def front_step_time(day):
    now = datetime.datetime.now()
    front = now - datetime.timedelta(days=day)
    d1 = front.strftime('%Y-%m-%d')
    #return int(d1)
    return d1

now=front_step_time(0)

bf=front_step_time(720)

sheet=pd.DataFrame()
sheet['code']=code

sheet['bf']=bf
sheet['sta']=now
#name='600354'
#b1=potential_vocanol(name,'2017-11-14','2018-02-14')
#b2=potential_vocanol(name,'2018-02-14','2018-04-13')


import time
from multiprocessing import Pool
import numpy as np

te =sheet.values

''' 
for name in te:


    mm=potential_index(name)
    #print(name,mm)


'''
if __name__ == "__main__" :
  startTime = time.time()
  testFL =sheet.values
  #ll=code
  pool = Pool(20)#可以同时跑10个进程
  pool.map(potential_index,testFL)
  pool.close()
  pool.join()   
  endTime = time.time()
  print ("time :", endTime - startTime)
{ 
    "_id" : ObjectId("5aed3d531815c4ffea37f824"), 
    "name" : "300519", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d571815c4ffea37f835"), 
    "name" : "002806", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d5e1815c4ffea37f850"), 
    "name" : "600753", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.08
}
{ 
    "_id" : ObjectId("5aed3d5e1815c4ffea37f854"), 
    "name" : "002047", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d621815c4ffea37f865"), 
    "name" : "002726", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.08
}
{ 
    "_id" : ObjectId("5aed3d661815c4ffea37f878"), 
    "name" : "002592", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.08
}
{ 
    "_id" : ObjectId("5aed3d661815c4ffea37f87a"), 
    "name" : "002584", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.1
}
{ 
    "_id" : ObjectId("5aed3d671815c4ffea37f87e"), 
    "name" : "002161", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.06
}
{ 
    "_id" : ObjectId("5aed3d801815c4ffea37f8e1"), 
    "name" : "002691", 
    "date" : NumberInt(20180505), 
    "ratio" : 0.09
}
posted @   luoganttcc  阅读(12)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
点击右上角即可分享
微信分享提示