pyspark 计算 皮尔逊相关系数


from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import Correlation

from pyspark.sql import SparkSession

spark= SparkSession\
                .builder \
                .appName("dataFrame") \
                .getOrCreate()
# # 导入类型
#from pyspark.sql.types import *

data = [(Vectors.sparse(4, [(0, 1.0), (3, -2.0)]),),
        (Vectors.dense([4.0, 5.0, 0.0, 3.0]),),
        (Vectors.dense([6.0, 7.0, 0.0, 8.0]),),
        (Vectors.sparse(4, [(0, 9.0), (3, 1.0)]),)]
df = spark.createDataFrame(data, ["features"])

r1 = Correlation.corr(df, "features").head()
print("Pearson correlation matrix:\n" + str(r1[0]))

r2 = Correlation.corr(df, "features", "spearman").head()
print("Spearman correlation matrix:\n" + str(r2[0]))
Pearson correlation matrix:
DenseMatrix([[1.        , 0.05564149,        nan, 0.40047142],
             [0.05564149, 1.        ,        nan, 0.91359586],
             [       nan,        nan, 1.        ,        nan],
             [0.40047142, 0.91359586,        nan, 1.        ]])
Spearman correlation matrix:
DenseMatrix([[1.        , 0.10540926,        nan, 0.4       ],
             [0.10540926, 1.        ,        nan, 0.9486833 ],
             [       nan,        nan, 1.        ,        nan],
             [0.4       , 0.9486833 ,        nan, 1.        ]])
posted @ 2022-08-19 22:58  luoganttcc  阅读(96)  评论(0编辑  收藏  举报