pyspark pipline

关于pip line的介绍

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  7 16:49:03 2018

@author: luogan
"""

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer


from pyspark.sql import SparkSession

spark= SparkSession\
                .builder \
                .appName("dataFrame") \
                .getOrCreate()

# Prepare training documents from a list of (id, text, label) tuples.
training = spark.createDataFrame([
    (0, "a b c d e spark", 1.0),
    (1, "b d", 0.0),
    (2, "spark f g h", 1.0),
    (3, "hadoop mapreduce", 0.0)
], ["id", "text", "label"])

# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.001)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

# Fit the pipeline to training documents.
model = pipeline.fit(training)

# Prepare test documents, which are unlabeled (id, text) tuples.
test = spark.createDataFrame([
    (4, "spark i j k"),
    (5, "l m n"),
    (6, "spark hadoop spark"),
    (7, "apache hadoop")
], ["id", "text"])

# Make predictions on test documents and print columns of interest.
prediction = model.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
    rid, text, prob, prediction = row
    print("(%d, %s) --> prob=%s, prediction=%f" % (rid, text, str(prob), prediction))
(4, spark i j k) --> prob=[0.15554371384424398,0.844456286155756], prediction=1.000000
(5, l m n) --> prob=[0.8307077352111738,0.16929226478882617], prediction=0.000000
(6, spark hadoop spark) --> prob=[0.06962184061952888,0.9303781593804711], prediction=1.000000
(7, apache hadoop) --> prob=[0.9815183503510166,0.018481649648983405], prediction=0.000000
posted @ 2022-08-19 22:58  luoganttcc  阅读(15)  评论(0编辑  收藏  举报