股票常用指标

原文

其他好文章

指标

先把要用指标放上来

缩写描述
KKDJ中的K值
DKDJ中的D值
JKDJ中的J值
MACD异同移动平均线
MOM动量线
BIAS乖离率
CMO钱德动量摆动指标
TRIX三重指数平滑平均线
OBV能量潮
ROC变动率指标
AMA移动平均平行线差指标
VR成交量变异率
PSY心理线指标
Force Index强力指数指标
DPO区间震荡线
VHF十字过滤线指标
RVI相对活力指数

实现

import pandas as pd
import numpy as np
import talib
import stockstats
import pandas_talib
import tushare as ts

df=ts.get_hist_data('601857')

df1=df.copy()
'''
	这里虽然没有定义df这个变量,但这很明显就是dateframe格式的某只股票基础数据
	包括开盘价、收盘价、最高价、最低价和成交量
	建议用tushare来获取数据(当然仅限日数据)
'''
stockStat = stockstats.StockDataFrame.retype(df)
close = df.close
highPrice = df.high
lowPrice = df.low
volume = df.volume




df.rename(columns={'close': 'Close', 'volume': 'Volume'}, inplace=True)

sig_k , sig_d  = talib.STOCH(np.array(highPrice), np.array(lowPrice), 
							 np.array(close), fastk_period=9,slowk_period=3, 
							 slowk_matype=0, slowd_period=3, slowd_matype=0)


sig_j = sig_k * 3 - sig_d  * 2

sig = pd.DataFrame()

sig['K']=list(sig_k)
sig['D']=list(sig_d)
sig['J']=list(sig_j)



#sig = pd.DataFrame([list(sig_k), list(sig_d), list(sig_j)],  columns=['K', 'D', 'J'])


sig['MACD'], MACDsignal, MACDhist = talib.MACD(np.array(close), fastperiod=6, 
												slowperiod=12, signalperiod=9)
sig['MOM'] = talib.MOM(np.array(close), timeperiod=5)
sig['CMO'] = talib.CMO(np.array(close), timeperiod=10)
sig['TRIX'] = talib.TRIX(np.array(close), timeperiod=14)
sig['OBV'] = talib.OBV(np.array(close), volume)
sig['ROC'] = talib.ROC(np.array(close), timeperiod=10)
sig['VR'] = list(stockStat['vr'])
sig['Force_Index'] = list(pandas_talib.FORCE(df, 12)['Force_12'])
def BIAS(close, timeperiod=20):
    if isinstance(close,np.ndarray):
        pass
    else:
        close = np.array(close)
    MA = talib.MA(close,timeperiod=timeperiod)
    return (close-MA)/MA

bias=BIAS(close, timeperiod=20)

def AMA(stockStat):
    return talib.MA(stockStat['dma'],  timeperiod=10)

ama=AMA(stockStat)

def PSY(priceData, period):
    difference = priceData[1:] - priceData[:-1]
    difference = np.append(0, difference)
    difference_dir = np.where(difference > 0, 1, 0)
    psy = np.zeros((len(priceData),))
    psy[:period] *= np.nan
    for i in range(period, len(priceData)):
        psy[i] = (difference_dir[i-period+1:i+1].sum()) / period
    return psy*100
def DPO(close):
    p = talib.MA(close, timeperiod=11)
    p.shift()
    return close-p

def VHF(close):
    LCP = talib.MIN(close, timeperiod=28)
    HCP = talib.MAX(close, timeperiod=28)
    NUM = HCP - LCP
    pre = close.copy()
    pre = pre.shift()
    DEN = abs(close-close.shift())
    DEN = talib.MA(DEN, timeperiod=28)*28
    return NUM.div(DEN)

vhf=VHF(close)

def RVI(df):
    close = df.close
    open = df.open
    high = df.high
    low = df.low
    X = close-open+2*(close.shift()-open.shift())+2*(close.shift(periods=2)-open.shift(periods=2))*(close.shift(periods=3)-
    	open.shift(periods=3))/6
    Y = high-low+2*(high.shift()-low.shift())+2*(high.shift(periods=2)-low.shift(periods=2))*(high.shift(periods=3)-
    	low.shift(periods=3))/6
    Z = talib.MA(X, timeperiod=10)*10
    D = talib.MA(Y, timeperiod=10)*10
    return Z/D

rvi=RVI(df1)

posted @   luoganttcc  阅读(36)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
点击右上角即可分享
微信分享提示