UpSampling2D用法

# import tensorflow as tf
from tensorflow.keras.layers import UpSampling2D,Input
import numpy

from tensorflow.keras import Model

x = numpy.array([[1, 2,3], [4, 5,6]])
inputs = Input(shape=(2, 3, 1))
out =UpSampling2D(size=(4, 4))(inputs)
model = Model(inputs, out)
model.summary()
y = model.predict(numpy.reshape(x, (1, 2, 3, 1)))
y = numpy.reshape(y, (8,12))
print('input:')
print(x)
print('output:')
print(y)
upsampling 2d 就是将原矩阵分别沿着原来的数值阵列对应的倍数
input:
[[1 2 3]
 [4 5 6]]
output:
[[1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]]

import numpy as np

from tensorflow.keras.layers import (
    UpSampling2D,
)

x=np.array(range(24)).reshape((1,2,3,4))

print(x.shape)
x1= UpSampling2D((3,4))(x)

print(x1.shape)
(1, 2, 3, 4)
(1, 6, 12, 4)
posted @   luoganttcc  阅读(134)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~
点击右上角即可分享
微信分享提示