"""
Created on Sun Sep 30 18:00:30 2018
这是用keras搭建的简单的cnn 网络
@author: lg
"""
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from matplotlib import pyplot as plt
num_classes = 10
model_name = 'cifar10.h5'
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
plt.imshow(x_train[0])
plt.show()
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',strides=(1,1) ,input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add( MaxPooling2D(pool_size=(2, 2),strides=(2,2),padding='same') )
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.summary()
opt = keras.optimizers.rmsprop(lr=0.001, decay=1e-6)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
hist = model.fit(x_train, y_train, epochs=40, shuffle=True)
model.save(model_name)
loss, accuracy = model.evaluate(x_test, y_test)
print (loss, accuracy)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)