from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import TimeDistributed
from keras.layers import LSTM
import numpy as np
length = 5
seq = array([i/float(length) for i in range(length)])
X=np.array([ [[ 0. , 0. ],
[ 0.2, 0.2],
[ 0.4, 0.4],
[ 0.6, 0.6],
[ 0.8, 0.8]],
[[ 0. , 0. ],
[ 0.2, 0.2],
[ 0.4, 0.4],
[ 0.6, 0.6],
[ 0.8, 0.8]],
])
y=np.array([ [[ 0,1,0],
[ 0,0,1],
[ 1,0,0],
[ 0,1,0],
[ 0,0,1]],
[[ 0,1,0],
[ 0,0,1],
[ 1,0,0],
[ 0,1,0],
[ 0,0,1]],
])
n_neurons = length
n_batch = 1
n_epoch = 2000
model = Sequential()
model.add(LSTM(n_neurons, input_shape=(length, 2), return_sequences=True))
model.add(TimeDistributed(Dense(3,activation='softmax')))
model.compile(loss='categorical_crossentropy', optimizer='adam')
print(model.summary())
model.fit(X, y, epochs=n_epoch, batch_size=n_batch, verbose=2)
result = model.predict(X, batch_size=n_batch, verbose=0)
for value in result[0,:,0]:
print('%.1f' % value)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)