tensorboard 用法(一)

import tensorflow as tf
import numpy as np

## prepare the original data
with tf.name_scope('data'):
     x_data = np.random.rand(100).astype(np.float32)
     y_data = 0.3*x_data+0.1
##creat parameters
with tf.name_scope('parameters'):
     with tf.name_scope('weights'):
           weight = tf.Variable(tf.random_uniform([1],-1.0,1.0))
           tf.summary.histogram('weight',weight)
     with tf.name_scope('biases'):
           bias = tf.Variable(tf.zeros([1]))
           tf.summary.histogram('bias',bias)
           
##get y_prediction
with tf.name_scope('y_prediction'):
     y_prediction = weight*x_data+bias
##compute the loss
with tf.name_scope('loss'):
     loss = tf.reduce_mean(tf.square(y_data-y_prediction))
     tf.summary.scalar('loss',loss)
##creat optimizer
optimizer = tf.train.GradientDescentOptimizer(0.5)
#creat train ,minimize the loss 
with tf.name_scope('train'):
     train = optimizer.minimize(loss)
#creat init
with tf.name_scope('init'): 
     init = tf.global_variables_initializer()
##creat a Session 
sess = tf.Session()
#merged
merged = tf.summary.merge_all()
##initialize
writer = tf.summary.FileWriter("logs/", sess.graph)
sess.run(init)
## Loop
for step  in  range(101):
    sess.run(train)
    rs=sess.run(merged)
    writer.add_summary(rs, step)

posted @   luoganttcc  阅读(75)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示