吴良超 融合 cnn+lstm
from keras.applications.vgg16 import VGG16
from keras.models import Sequential, Model
from keras.layers import Input, TimeDistributed, Flatten, GRU, Dense, Dropout
from keras import optimizers
def build_model():
pretrained_cnn = VGG16(weights='imagenet', include_top=False)
# pretrained_cnn.trainable = False
for layer in pretrained_cnn.layers[:-5]:
layer.trainable = False
# input shape required by pretrained_cnn
input = Input(shape = (224, 224, 3))
x = pretrained_cnn(input)
x = Flatten()(x)
x = Dense(2048)(x)
x = Dropout(0.5)(x)
pretrained_cnn = Model(inputs = input, output = x)
input_shape = (None, 224, 224, 3) # (seq_len, width, height, channel)
model = Sequential()
model.add(TimeDistributed(pretrained_cnn, input_shape=input_shape))
model.add(GRU(1024, kernel_initializer='orthogonal', bias_initializer='ones', dropout=0.5, recurrent_dropout=0.5))
model.add(Dense(categories, activation = 'softmax'))
model.compile(loss='categorical_crossentropy',
optimizer = optimizers.SGD(lr=0.01, momentum=0.9, clipnorm=1., clipvalue=0.5),
metrics=['accuracy'])
return model
keras 官方给出的例子
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.applications import InceptionV3
video=keras.Input(shape=(None,150,150,3))
cnn=InceptionV3(weights='imagenet',include_top=False,pooling='avg')
cnn.trainable=False
frame_features=layers.TimeDistributed(cnn)(video)
video_vector=layers.LSTM(256)(frame_features)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)