tensorflow 加载模型
训练模型
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
money=np.array([[109],[82],[99], [72], [87], [78], [86], [84], [94], [57]]).astype(np.float32)
click=np.array([[11], [8], [8], [6],[ 7], [7], [7], [8], [9], [5]]).astype(np.float32)
x_test=money[0:5].reshape(-1,1)
y_test=click[0:5]
x_train=money[5:].reshape(-1,1)
y_train=click[5:]
x=tf.placeholder(tf.float32,[None,1],name='x') #保存要输入的格式
w=tf.Variable(tf.zeros([1,1]))
b=tf.Variable(tf.zeros([1]))
y=tf.matmul(x,w)+b
tf.add_to_collection('pred_network', y) #用于加载模型获取要预测的网络结构
y_=tf.placeholder(tf.float32,[None,1])
cost=tf.reduce_sum(tf.pow((y-y_),2))
train_step=tf.train.GradientDescentOptimizer(0.000001).minimize(cost)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
cost_history=[]
saver = tf.train.Saver()
for i in range(100):
feed={x:x_train,y_:y_train}
sess.run(train_step,feed_dict=feed)
cost_history.append(sess.run(cost,feed_dict=feed))
# 输出最终的W,b和cost值
print("109的预测值是:",sess.run(y, feed_dict={x: [[109]]}))
print("W_Value: %f" % sess.run(w), "b_Value: %f" % sess.run(b), "cost_Value: %f" % sess.run(cost, feed_dict=feed))
# saver_path = saver.save(sess, "/modelsave/model.ckpt",global_step=100)
# print("model saved in file: ", saver_path)
#saver.save(sess, "modelsave/model")
saver.save(sess, "modelsave/linermodel.cpkt")
加载模型
import tensorflow as tf
with tf.Session() as sess:
new_saver=tf.train.import_meta_graph('modelsave/model.ckpt-100.meta')
new_saver.restore(sess,"modelsave/model.ckpt-100")
graph = tf.get_default_graph()
x=graph.get_operation_by_name('x').outputs[0]
y=tf.get_collection("pred_network")[0]
print("109的预测值是:",sess.run(y, feed_dict={x: [[109]]}))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)