股票常用指标

原文

其他好文章

指标

先把要用指标放上来

缩写 描述
K KDJ中的K值
D KDJ中的D值
J KDJ中的J值
MACD 异同移动平均线
MOM 动量线
BIAS 乖离率
CMO 钱德动量摆动指标
TRIX 三重指数平滑平均线
OBV 能量潮
ROC 变动率指标
AMA 移动平均平行线差指标
VR 成交量变异率
PSY 心理线指标
Force Index 强力指数指标
DPO 区间震荡线
VHF 十字过滤线指标
RVI 相对活力指数

实现

import pandas as pd
import numpy as np
import talib
import stockstats
import pandas_talib
import tushare as ts

df=ts.get_hist_data('601857')

df1=df.copy()
'''
	这里虽然没有定义df这个变量,但这很明显就是dateframe格式的某只股票基础数据
	包括开盘价、收盘价、最高价、最低价和成交量
	建议用tushare来获取数据(当然仅限日数据)
'''
stockStat = stockstats.StockDataFrame.retype(df)
close = df.close
highPrice = df.high
lowPrice = df.low
volume = df.volume




df.rename(columns={'close': 'Close', 'volume': 'Volume'}, inplace=True)

sig_k , sig_d  = talib.STOCH(np.array(highPrice), np.array(lowPrice), 
							 np.array(close), fastk_period=9,slowk_period=3, 
							 slowk_matype=0, slowd_period=3, slowd_matype=0)


sig_j = sig_k * 3 - sig_d  * 2

sig = pd.DataFrame()

sig['K']=list(sig_k)
sig['D']=list(sig_d)
sig['J']=list(sig_j)



#sig = pd.DataFrame([list(sig_k), list(sig_d), list(sig_j)],  columns=['K', 'D', 'J'])


sig['MACD'], MACDsignal, MACDhist = talib.MACD(np.array(close), fastperiod=6, 
												slowperiod=12, signalperiod=9)
sig['MOM'] = talib.MOM(np.array(close), timeperiod=5)
sig['CMO'] = talib.CMO(np.array(close), timeperiod=10)
sig['TRIX'] = talib.TRIX(np.array(close), timeperiod=14)
sig['OBV'] = talib.OBV(np.array(close), volume)
sig['ROC'] = talib.ROC(np.array(close), timeperiod=10)
sig['VR'] = list(stockStat['vr'])
sig['Force_Index'] = list(pandas_talib.FORCE(df, 12)['Force_12'])
def BIAS(close, timeperiod=20):
    if isinstance(close,np.ndarray):
        pass
    else:
        close = np.array(close)
    MA = talib.MA(close,timeperiod=timeperiod)
    return (close-MA)/MA

bias=BIAS(close, timeperiod=20)

def AMA(stockStat):
    return talib.MA(stockStat['dma'],  timeperiod=10)

ama=AMA(stockStat)

def PSY(priceData, period):
    difference = priceData[1:] - priceData[:-1]
    difference = np.append(0, difference)
    difference_dir = np.where(difference > 0, 1, 0)
    psy = np.zeros((len(priceData),))
    psy[:period] *= np.nan
    for i in range(period, len(priceData)):
        psy[i] = (difference_dir[i-period+1:i+1].sum()) / period
    return psy*100
def DPO(close):
    p = talib.MA(close, timeperiod=11)
    p.shift()
    return close-p

def VHF(close):
    LCP = talib.MIN(close, timeperiod=28)
    HCP = talib.MAX(close, timeperiod=28)
    NUM = HCP - LCP
    pre = close.copy()
    pre = pre.shift()
    DEN = abs(close-close.shift())
    DEN = talib.MA(DEN, timeperiod=28)*28
    return NUM.div(DEN)

vhf=VHF(close)

def RVI(df):
    close = df.close
    open = df.open
    high = df.high
    low = df.low
    X = close-open+2*(close.shift()-open.shift())+2*(close.shift(periods=2)-open.shift(periods=2))*(close.shift(periods=3)-
    	open.shift(periods=3))/6
    Y = high-low+2*(high.shift()-low.shift())+2*(high.shift(periods=2)-low.shift(periods=2))*(high.shift(periods=3)-
    	low.shift(periods=3))/6
    Z = talib.MA(X, timeperiod=10)*10
    D = talib.MA(Y, timeperiod=10)*10
    return Z/D

rvi=RVI(df1)

posted @   luoganttcc  阅读(717)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示