MySQL实战45讲学习笔记:第八讲
一、今日内容概要
我在第 3 篇文章和你讲事务隔离级别的时候提到过,如果是可重复读隔离级别,事务 T 启动的时候会创建一个视图 read-view,之后事务 T 执行期间,即使有其他事务修改了数
据,事务 T 看到的仍然跟在启动时看到的一样。也就是说,一个在可重复读隔离级别下执行的事务,好像与世无争,不受外界影响。
但是,我在上一篇文章中,和你分享行锁的时候又提到,一个事务要更新一行,如果刚好有另外一个事务拥有这一行的行锁,它又不能这么超然了,会被锁住,进入等待状态。问
题是,既然进入了等待状态,那么等到这个事务自己获取到行锁要更新数据的时候,它读到的值又是什么呢?
我给你举一个例子吧。下面是一个只有两行的表的初始化语句。
mysql> CREATE TABLE `t` ( `id` int(11) NOT NULL, `k` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB; insert into t(id, k) values(1,1),(2,2);
图 1 事务 A、B、C 的执行流程
这里,我们需要注意的是事务的启动时机。
begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作InnoDB 表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用 start
transaction with consistent snapshot 这个命令。
第一种启动方式,一致性视图是在第执行第一个快照读语句时创建的; 第二种启动方式,一致性视图是在执行 start transaction with consistentsnapshot 时创建的。
还需要注意的是,在整个专栏里面,我们的例子中如果没有特别说明,都是默认autocommit=1。
在这个例子中,事务 C 没有显式地使用 begin/commit,表示这个 update 语句本身就是一个事务,语句完成的时候会自动提交。事务 B 在更新了行之后查询 ; 事务 A 在一个只读
事务中查询,并且时间顺序上是在事务 B 的查询之后。
这时,如果我告诉你事务 B 查到的 k 的值是 3,而事务 A 查到的 k 的值是 1,你是不是感觉有点晕呢?
所以,今天这篇文章,我其实就是想和你说明白这个问题,希望借由把这个疑惑解开的过程,能够帮助你对 InnoDB 的事务和锁有更进一步的理解。
在 MySQL 里,有两个“视图”的概念:
一个是 view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是 create view … ,而它的查询方法与表一样。 另一个是 InnoDB 在实现 MVCC 时用到的一致性读视图,即 consistent read view,用于支持 RC(Read Committed,读提交)和 RR(Repeatable Read,可重复读)隔离级别的实现。
它没有物理结构,作用是事务执行期间用来定义“我能看到什么数据”。
在第 3 篇文章《事务隔离:为什么你改了我还看不见?》中,我跟你解释过一遍 MVCC的实现逻辑。今天为了说明查询和更新的区别,我换一个方式来说明,把 read view 拆
开。你可以结合这两篇文章的说明来更深一步地理解 MVCC。
二、“快照”在 MVCC 里是怎么工作的?
在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。
这时,你会说这看上去不太现实啊。如果一个库有 100G,那么我启动一个事务,MySQL就要拷贝 100G 的数据出来,这个过程得多慢啊。可是,我平时的事务执行起来很快啊。
实际上,我们并不需要拷贝出这 100G 的数据。我们先来看看这个快照是怎么实现的。InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时
候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。
1、数据表中的一行记录、其实可能有多个版本(row)row trx_id
而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的
数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。
也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 rowtrx_id。
如图 2 所示,就是一个记录被多个事务连续更新后的状态。
图 2 行状态变更图
图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。
1、undo log在哪呢?
你可能会问,前面的文章不是说,语句更新会生成 undo log(回滚日志)吗?那么,undo log 在哪呢?
实际上,图 2 中的三个虚线箭头,就是 undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时
候,就是通过 V4 依次执行 U3、U2 算出来。
明白了多版本和 row trx_id 的概念后,我们再来想一下,InnoDB 是怎么定义那个“100G”的快照的。
按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。
因此,一个事务只需要在启动的时候声明说,
1、以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;
2、如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。
当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。
2、活跃的指的是?
在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。
数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1记为高水位。
这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。
而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。
2、对于当前事务的启动瞬间来数,一个数据版本的row trx_id有那几种可能?
这个视图数组把所有的 row trx_id 分成了几种不同的情况。
图 3 数据版本可见性规则
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:
1. 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
2. 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
3. 如果落在黄色部分,那就包括两种情况
a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见; b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。
比如,对于图 2 中的数据来说,如果有一个事务,它的低水位是 18,那么当它访问这一行数据时,就会从 V4 通过 U3 计算出 V3,所以在它看来,这一行的值是 11。
你看,有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?因为之后的更新,生成的版本一定属于上面的 2 或者 3(a) 的情况,而对它来说,这
些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。
所以你现在知道了,InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。
3、事务A的语句返回的结果、为什么是k=1(人肉分析过程)
接下来,我们继续看一下图 1 中的三个事务,分析下事务 A 的语句返回的结果,为什么是k=1。
1、人肉分析过程
这里,我们不妨做如下假设:
1. 事务 A 开始前,系统里面只有一个活跃事务 ID 是 99;
2. 事务 A、B、C 的版本号分别是 100、101、102,且当前系统里只有这四个事务;
3. 三个事务开始前,(1,1)这一行数据的 row trx_id 是 90。
这样,事务 A 的视图数组就是 [99,100], 事务 B 的视图数组是 [99,100,101], 事务 C 的视图数组是 [99,100,101,102]。
为了简化分析,我先把其他干扰语句去掉,只画出跟事务 A 查询逻辑有关的操作:
图 4 事务 A 查询数据逻辑图
从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。
第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。
你可能注意到了,在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了。
好,现在事务 A 要来读数据了,它的视图数组是 [99,100]。当然了,读数据都是从当前版本读起的。所以,事务 A 查询语句的读数据流程是这样的:
- 找到 (1,3) 的时候,判断出 row trx_id=101,比高水位大,处于红色区域,不可见;
- 接着,找到上一个历史版本,一看 row trx_id=102,比高水位大,处于红色区域,不可见;
- 再往前找,终于找到了(1,1),它的 row trx_id=90,比低水位小,处于绿色区域,可见
这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。
4、事务A的语句返回的结果、为什么是k=1(代码逻辑分析过程)
这个判断规则是从代码逻辑直接转译过来的,但是正如你所见,用于人肉分析可见性很麻烦。
所以,我来给你翻译一下。一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:
1. 版本未提交,不可见;
2. 版本已提交,但是是在视图创建后提交的,不可见;
3. 版本已提交,而且是在视图创建前提交的,可见。
现在,我们用这个规则来判断图 4 中的查询结果,事务 A 的查询语句的视图数组是在事务A 启动的时候生成的,这时候:
(1,3) 还没提交,属于情况 1,不可见;
(1,2) 虽然提交了,但是是在视图数组创建之后提交的,属于情况 2,不可见;
(1,1) 是在视图数组创建之前提交的,可见。
你看,去掉数字对比后,只用时间先后顺序来判断,分析起来是不是轻松多了。所以,后面我们就都用这个规则来分析。
三、更新逻辑
细心的同学可能有疑问了:事务 B 的 update 语句,如果按照一致性读,好像结果不对哦?
1、事务B的更新语句会怎么处理呢(当前读)?
你看图 5 中,事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2)吗,怎么能算出 (1,3) 来?
图 5 事务 B 更新逻辑图
是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1。
但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了。因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作。
所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。
因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。
所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3。
这里我们提到了一个概念,叫作当前读。其实,除了 update 语句外,select 语句如果加锁,也是当前读。
2、事务B的更新语句会怎么处理呢(两阶段锁)?
所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock inshare mode 或 for update,也都可以读到版本号是 101 的数据,返回的 k 的值是 3。下
面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)。
再往前一步,假设事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢?
图 6 事务 A、B、C'的执行流程
事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。前面说过了,虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的
最新版本。那么,事务 B 的更新语句会怎么处理呢?
这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且
必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读。
图 7 事务 B 更新逻辑图(配合事务 C')
到这里,我们把一致性读、当前读和行锁就串起来了。
现在,我们再回到文章开头的问题:
事务的可重复读的能力是怎么实现的?
可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。
3、读提交和可重复读的主要区别?
而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:
在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图; 在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。
那么,我们再看一下,在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?
这里需要说明一下,“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。所以,在读提交隔离级别下,这个用法就
没意义了,等效于普通的 start transaction。
下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的 read view 框。(注意:这里,我们用的还是事务 C 的逻辑直接提交,而不是事务 C’)
图 8 读提交隔离级别下的事务状态图
这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:
(1,3) 还没提交,属于情况 1,不可见; (1,2) 提交了,属于情况 3,可见
所以,这时候事务 A 查询语句返回的是 k=2。显然地,事务 B 查询结果 k=3。
四、小结
InnoDB 的行数据有多个版本,每个数据版本有自己的 row trx_id,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据 row trx_id 和一致性视图
确定数据版本的可见性。
对于可重复读,查询只承认在事务启动前就已经提交完成的数据; 对于读提交,查询只承认在语句启动前就已经提交完成的数据;
而当前读,总是读取已经提交完成的最新版本。
你也可以想一下,为什么表结构不支持“可重复读”?这是因为表结构没有对应的行数据,也没有 row trx_id,因此只能遵循当前读的逻辑。
当然,MySQL 8.0 已经可以把表结构放在 InnoDB 字典里了,也许以后会支持表结构的可重复读。
又到思考题时间了。我用下面的表结构和初始化语句作为试验环境,事务隔离级别是可重复读。现在,我要把所有“字段 c 和 id 值相等的行”的 c 值清零,但是却发现了一
个“诡异”的、改不掉的情况。请你构造出这种情况,并说明其原理。
mysql> CREATE TABLE `t` ( `id` int(11) NOT NULL, `c` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB; insert into t(id, c) values(1,1),(2,2),(3,3),(4,4);
复现出来以后,请你再思考一下,在实际的业务开发中有没有可能碰到这种情况?你的应用代码会不会掉进这个“坑”里,你又是怎么解决的呢?
你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。
五、上期问题时间
我在上一篇文章最后,留给你的问题是:怎么删除表的前 10000 行。比较多的留言都选择了第二种方式,即:在一个连接中循环执行 20 次 delete from T limit 500。
确实是这样的,第二种方式是相对较好的。
第一种方式(即:直接执行 delete from T limit 10000)里面,单个语句占用时间长,锁的时间也比较长;而且大事务还会导致主从延迟。
第三种方式(即:在 20 个连接中同时执行 delete from T limit 500),会人为造成锁冲突。
六、精选留言
这篇理论知识很丰富,需要先总结下:
1.innodb支持RC和RR隔离级别实现是用的一致性视图(consistent read view)
2.事务在启动时会拍一个快照,这个快照是基于整个库的.
基于整个库的意思就是说一个事务内,整个库的修改对于该事务都是不可见的(对于快照读的情况)
如果在事务内select t表,另外的事务执行了DDL t表,根据发生时间,要嘛锁住要嘛报错(参考第六章)
3.事务是如何实现的MVCC呢?
(1)每个事务都有一个事务ID,叫做transaction id(严格递增)
(2)事务在启动时,找到已提交的最大事务ID记为up_limit_id。
(3)事务在更新一条语句时,比如id=1改为了id=2.会把id=1和该行之前的row trx_id写到undo log里,并且在数据页上把id的值改为2,并且把修改这条语句的transaction id记在该行行头
(4)再定一个规矩,一个事务要查看一条数据时,必须先用该事务的up_limit_id与该行的transaction id做比对,
如果up_limit_id>=transaction id,那么可以看.如果up_limit_id<transaction id,则只能去undo log里去取。去undo log查找数据的时候,也需要做比对,必须up_limit_id>transaction id,才返回数据
4.什么是当前读,由于当前读都是先读后写,只能读当前的值,所以为当前读.会更新事务内的up_limit_id为该事务的transaction id
5.为什么rr能实现可重复读而rc不能,分两种情况
(1)快照读的情况下,rr不能更新事务内的up_limit_id,而rc每次会把up_limit_id更新为快照读之前最新已提交事务的transaction id,则rc不能可重复读
(2)当前读的情况下,rr是利用record lock+gap lock来实现的,而rc没有gap,所以rc不能可重复读