list互转map java8

 list转map

/**
* If the specified key is not already associated with a value or is
* associated with null, associates it with the given non-null value.
* Otherwise, replaces the associated value with the results of the given
* remapping function, or removes if the result is {@code null}. This
* method may be of use when combining multiple mapped values for a key.
* For example, to either create or append a {@code String msg} to a
* value mapping:
*
* <pre> {@code
* map.merge(key, msg, String::concat)
* }</pre>
*
* <p>If the function returns {@code null} the mapping is removed. If the
* function itself throws an (unchecked) exception, the exception is
* rethrown, and the current mapping is left unchanged.
*
* @implSpec
* The default implementation is equivalent to performing the following
* steps for this {@code map}, then returning the current value or
* {@code null} if absent:
*
* <pre> {@code
* V oldValue = map.get(key);
* V newValue = (oldValue == null) ? value :
* remappingFunction.apply(oldValue, value);
* if (newValue == null)
* map.remove(key);
* else
* map.put(key, newValue);
* }</pre>
*
* <p>The default implementation makes no guarantees about synchronization
* or atomicity properties of this method. Any implementation providing
* atomicity guarantees must override this method and document its
* concurrency properties. In particular, all implementations of
* subinterface {@link java.util.concurrent.ConcurrentMap} must document
* whether the function is applied once atomically only if the value is not
* present.
*
* @param key key with which the resulting value is to be associated
* @param value the non-null value to be merged with the existing value
* associated with the key or, if no existing value or a null value
* is associated with the key, to be associated with the key
* @param remappingFunction the function to recompute a value if present
* @return the new value associated with the specified key, or null if no
* value is associated with the key
* @throws UnsupportedOperationException if the {@code put} operation
* is not supported by this map
* (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
* @throws ClassCastException if the class of the specified key or value
* prevents it from being stored in this map
* (<a href="{@docRoot}/java/util/Collection.html#optional-restrictions">optional</a>)
* @throws NullPointerException if the specified key is null and this map
* does not support null keys or the value or remappingFunction is
* null
* @since 1.8
*/
default V merge(K key, V value,
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction);
Objects.requireNonNull(value);
V oldValue = get(key);
V newValue = (oldValue == null) ? value :
remappingFunction.apply(oldValue, value);
if(newValue == null) {
remove(key);
} else {
put(key, newValue);
}
return newValue;
}
/**
* Returns a {@code Collector} that accumulates elements into a
* {@code Map} whose keys and values are the result of applying the provided
* mapping functions to the input elements.
*
* <p>If the mapped
* keys contains duplicates (according to {@link Object#equals(Object)}),
* the value mapping function is applied to each equal element, and the
* results are merged using the provided merging function. The {@code Map}
* is created by a provided supplier function.
*
* @implNote
* The returned {@code Collector} is not concurrent. For parallel stream
* pipelines, the {@code combiner} function operates by merging the keys
* from one map into another, which can be an expensive operation. If it is
* not required that results are merged into the {@code Map} in encounter
* order, using {@link #toConcurrentMap(Function, Function, BinaryOperator, Supplier)}
* may offer better parallel performance.
*
* @param <T> the type of the input elements
* @param <K> the output type of the key mapping function
* @param <U> the output type of the value mapping function
* @param <M> the type of the resulting {@code Map}
* @param keyMapper a mapping function to produce keys
* @param valueMapper a mapping function to produce values
* @param mergeFunction a merge function, used to resolve collisions between
* values associated with the same key, as supplied
* to {@link Map#merge(Object, Object, BiFunction)}
* @param mapSupplier a function which returns a new, empty {@code Map} into
* which the results will be inserted
* @return a {@code Collector} which collects elements into a {@code Map}
* whose keys are the result of applying a key mapping function to the input
* elements, and whose values are the result of applying a value mapping
* function to all input elements equal to the key and combining them
* using the merge function
*
* @see #toMap(Function, Function)
* @see #toMap(Function, Function, BinaryOperator)
* @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier)
*/
public static <T, K, U, M extends Map<K, U>>
Collector<T, ?, M> toMap(Function<? super T, ? extends K> keyMapper,
Function<? super T, ? extends U> valueMapper,
BinaryOperator<U> mergeFunction,
Supplier<M> mapSupplier) {
BiConsumer<M, T> accumulator
= (map, element) -> map.merge(keyMapper.apply(element),
valueMapper.apply(element), mergeFunction);
return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_ID);
}
public Map<Long, String> getIdNameMap(List<Account> accounts) {
return accounts.stream().collect(Collectors.toMap(Account::getId, Account::getUsername));
2.收集对象实体本身
- 在开发过程中我们也需要有时候对自己的list中的实体按照其中的一个字段进行分组(比如 id ->List),这时候要设置map的value值是实体本身。
public Map<Long, Account> getIdAccountMap(List<Account> accounts) {
return accounts.stream().collect(Collectors.toMap(Account::getId, account -> account));
account -> account是一个返回本身的lambda表达式,其实还可以使用Function接口中的一个默认方法 Function.identity(),这个方法返回自身对象,更加简洁
重复key的情况。
在list转为map时,作为key的值有可能重复,这时候流的处理会抛出个异常:Java.lang.IllegalStateException:Duplicate key。这时候就要在toMap方法中指定当key冲突时key的选择。(这里是选择第二个key覆盖第一个key)
public Map<String, Account> getNameAccountMap(List<Account> accounts) {
return accounts.stream().collect(Collectors.toMap(Account::getUsername, Function.identity(), (key1, key2) -> key2));
可参考的blog:https://www.jianshu.com/p/09803ae6323c
用groupingBy 或者 partitioningBy进行分组
根据一个字段或者属性分组也可以直接用groupingBy方法,很方便。
Map<Integer, List<Person>> personGroups = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.groupingBy(Person::getAge));
Iterator it = personGroups.entrySet().iterator();
while (it.hasNext()) {
Map.Entry<Integer, List<Person>> persons = (Map.Entry) it.next();
System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size());
分组排序可参考的blog:https://www.cnblogs.com/fengkunangel/p/10434735.html
https://www.jianshu.com/p/d171e86071f7
partitioningBy可以理解为特殊的groupingBy,key值为truefalse,当然此时方法中的参数为一个判断语句(用于判断的函数式接口)
Map<Boolean, List<Person>> children = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.partitioningBy(p -> p.getAge() < 18));
System.out.println("Children number: " + children.get(true).size());
System.out.println("Adult number: " + children.get(false).size());

 使用集合中的某一个元素转化成list

List<String> skuList = productList.stream().map(ProductList::getSku).collect(Collectors.toList());

 

posted @   diligently  阅读(44)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
点击右上角即可分享
微信分享提示