『数学』你确定你学会了勾股弦定理!真的吗?看完这个篇文章再回答我!

在这里插入图片描述
勾股定理:

勾股定理,又称“毕达哥拉斯定理”,是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,上至帝王总统,下至平民百姓,都愿意探讨和研究它的证明。它是几何学中一颗闪亮的明珠。
简单来说就是,直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)

勾股数:

勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。
勾股数规律:

首先是奇数组口诀:平方后拆成连续两个数。

其次是偶数组口诀:平方的一半再拆成差2的两个数。

说了半天屁话, 我们深挖一下口诀,带你看看不一样的东西

定理: 如a2+b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;

1.直角三角形a2+b2=c2a^2+b^2=c^2奇数列a法则:
若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:
a=2n+1b=n2+n+121c=n2+n+12a=2n+1 \\ b= n^2+(n+1)^2-1 \\ c= n^2+(n+1)^2
证明:
abca2+b2=c2a2n+12+n2+n+1212=n2+n+122由勾股弦定理,若abc为直角三角形三边整数时必有a^2+b^2=c^2关系成立。\\ 现将奇数列a法则条件代入勾股弦定理得到下式: \\ (2n+1)^2+(n^2+(n+1)^2-1)^2=(n^2+(n+1)^2)^2
4n4+8n3+8n2+4n+1=4n4+8n3+8n2+4n+1n=12332+42=5252+122=13272+242=25292+402=412112+602=612132+842=852a化简后得到: 4n^4+8n^3+8n^2+4n+1=4n^4+8n^3+8n^2+4n+1 即等式关系成立; \\ 由法则条件分别取n=1、2、3 … 时得到了: \\ 3^2+4^2=5^2 \\ 5^2+12^2=13^2 \\ 7^2+24^2=25^2 \\ 9^2+40^2=41^2 \\ 11^2+60^2=61^2 \\ 13^2+84^2=85^2\\ 故得到奇数列a法则成立
2.直角三角形a2+b2=c2a^2+b^2=c^2的偶数列a法则:
若a表为2n型偶数(n=2、3、4…), 则a为偶数列平方整数解的关系是:
a=2nb=n21c=n2+1a= 2n \\ b= n^2 -1 \\ c= n^2+1
证明:
abca2+b2=c2.a(2n2+n212=n2+12n4+2n2+1=n4+2n2+1n=1b=n21=11=0n=234n=23442+32=5262+82=10282+152=172102+242=262122+352=372142+482=502a由勾股弦定理,若abc为直角三角形三边整数时必有a^2+b^2=c^2关系成立.\\现将偶数列a法则条件代入勾股弦定理得到下式: \\ (2n)^2+(n^2-1)^2=(n^2+1)^2 \\ 化简后得到: \\ n^4+2n^2+1= n^4+2n^2+1 \\ 即等式关系成立; \\ (这里需要说明,当取n=1时,有b= n2 –1=1-1=0,此时失去三角形意义,故只能取n=2、3、4…) \\ 由法则条件分别取n=2、3、4 … 时得到了: \\ 4^2+3^2=5^2 \\ 6^2+8^2=10^2 \\ 8^2+15^2=17^2 \\ 10^2+24^2=26^2 \\ 12^2+35^2=37^2 \\ 14^2+48^2=50^2 \\ 故得到偶数列a关系成立


写在最后:
Name:风骨散人,目前是一名双非在校大学生,预计考研,热爱编程,热爱技术,喜欢分享,知识无界,希望我的分享可以帮到你!名字的含义:我想有一天我能有能力随心所欲不逾矩,不总是向生活低头,有能力让家人拥有富足的生活而不是为了生计而到处奔波。“世人慌慌张张,不过是图碎银几两。偏偏这碎银几两,能解世间惆怅,可让父母安康,可护幼子成长 …”
文章主要内容:
Python,C++,C语言,JAVA,C#等语言的教程
ACM题解、模板、算法等,主要是数据结构,数学和图论
设计模式,数据库,计算机网络,操作系统,计算机组成原理
Python爬虫、深度学习、机器学习
计算机系408考研的所有专业课内容
目前还在更新中,先关注不迷路。微信公众号,cnblogs(博客园),CSDN同名“风骨散人”

如果有什么想看的,可以私信我,如果在能力范围内,我会发布相应的博文!
感谢大家的阅读!😘你的点赞、收藏、关注是对我最大的鼓励!

posted @ 2020-05-29 01:08  风骨散人  阅读(1435)  评论(0编辑  收藏  举报