疯子的算法总结(六) 简单排序总 选择排序+插入排序+比较排序+冒泡排序
一、数组的排序算法
1.选择排序
选择排序是指每次选择所需排序数组中的最大值或者最小值(根据排序方式选择,从大到小选最大,从小到大选最小),将这个元素与前面没有进行排序的元素交换。
下面以1 4 2 5 9 6这些乱序元素,来表现排序过程。
第一次排序 9 4 2 5 1 6
第二次排序 9 6 2 5 1 4
第三次排序 9 6 5 2 1 4
第四次排序 9 6 5 4 1 2
第五次排序 9 6 5 4 2 1
用一段程序实现以上过程
以由大到小为例
{
int i,j; /*定义主函数局部变量*/
int a[6]; /*开设容量为6的数组用于存入数据*/
int iTemp; /*定义暂时存储最值的变量*/
int iPos; /*定义用于存储最值位置的变量*/
for(i=0;i<6;i++)
cin>>a[i]; /*输入数组的值*/
for(i=0;i<5;i++) /*当剩余一个元素时循环即可停止,最后一个元素必定为最值*/
{
iTemp=a[i]; /*假设最值为第i个元素,开始时假设为第一个元素,0#位置*/
iPos=i; /*最值位置为i*/
for(j=i+1;j<6;j++) /*从最值的下一个元素开始循环,直到找到一个值比最大值还大的值*/
{
if(iTemp<a[j]) /*当找到那个值时*/
{
iTemp=a[j];/*重新记录最小值*/
iPos=j; /*记录最值位置为*/
}
}
a[iPos]=a[i];
a[i]=iTemp; /*交换最大最小值*/
}
for(i=0;i<6;i++)
cout<<a[i]; /*输出数组的值*/
return 0;
}
2.冒泡排序法
冒泡排序法是指在排序是比较相邻两个元素的数值,换位置(从大到小,大在前。从小到大,小在前。)下面仍以1 4 2 5 9 6这些乱序元素为例
以由大到小排序
第一排序过程 sec1 4 1 2 5 9 6 (1/4比较)
sec2 4 2 1 5 9 6 (1/2比较)
sec3 4 2 5 1 9 6 (1/5比较)
sec4 4 2 5 9 1 6 (1/9比较)
sec5 4 2 5 9 6 1 (1/6比较)
第二排序过程sec1 4 2 5 9 6 1 (4/2比较)
sec2 4 5 2 9 6 1(2/5比较)
sec3 4 5 9 2 6 1 (2/9比较)
sec4 4 5 9 6 2 1 (6/9比较)
sec5 4 5 9 6 2 1 (2/1比较)
第三排序过程:5 9 6 4 2 1(中间过程略)
第四排序过程:9 6 5 4 2 1(中间过程略)
第五排序过程:9 6 5 4 2 1(中间过程略)
虽然这个过程在四过程时就已经完成,这是针对特殊情况,一般情况要进行n-1此过程才能完全排序。
用程序实现上述过程
{
int i,j;
int iTemp;
int a[6];
for(i=0;i<6;i++)
cin>>a[i];
for(int i=0;i<5;i++)
{
for(int j=0;j<5;j++)
{
if(a[j]<a[j+1]) /*比较相邻元素的值*/
{
iTemp=a[j+1];
a[j+1]=a[j];
a[j]=iTemp; /*交换相邻元素的值*/
}
}
}
for(i=0;i<6;i++)
cout<<a[i];
return 0;
}
3.交换排序法
交换排序法,将每一位数于后边的数一一比较,如果发现符合交换条件的元素就进行交换;下面仍以下面仍以1 4 2 5 9 6这些乱序元素为例
以由大到小排序
第一次排序 1与4比较,1小于4交换4 1 2 5 9 6。4与2比较,4大于2继续。4与5比较,4小于5,交换5 1 2 4 9 6。5与9比较,5小于9,交换9 1 2 4 5 6。9与6比较,9大于6继续。
第二次排序 1与2比较,1小于2,交换9 2 1 4 5 6。2与4比较,2小于4交换9 4 1 2 5 6。4与5比较,4小于5,交换9 5 1 2 4 6。5与6比较,5小于6,交换9 6 1 2 4 5 。
第三次排序 9 6 5 1 2 4
第四次排序 9 6 5 4 1 2
第五次排序 9 6 5 4 2 1
用程序实现
{
int i,j;
int iTemp;
int a[6];
for(i=0;i<6;i++)
cin>>a[i];
for(i=0;i<5;i++)
{
for(j=i+1;j<6;j++)
{
if(a[i]<a[j]) /*寻找符合条件的值*/
{
iTemp=a[j];
a[j]=a[i];
a[i]=iTemp; /*交换*/
}
}
}
for(i=0;i<6;i++)
cout<<a[i];
return 0;
}
4.插入排序法
插入排序法相对较为复杂,从数组中抽出一个是在前面的数据中选择合适的位置插入。
下面仍以下面仍以1 4 2 5 9 6这些乱序元素为例
以由大到小排序
第一次 取出1放在第一个位置 1
第二次 取出4,跟1比较大小,大于1放在1前面。 4 1
第三次取出2,跟1比较大小,比1大,则再跟4比较大小。小于4,插入。 4 2 1
第四次取出5,跟1比较大小,大于1,则再跟前一元素2比较,大于2,则再跟前一元素4比较,大于4,插入。5 4 2 1
第五次 9 5 4 2 1
第六次9 6 5 4 2 1
用程序实现上述过程
{
int i,j;
int iTemp;
int iPos;
int a[6];
for(i=0;i<6;i++)
cin>>a[i];
for(i=1;i<6;i++)
{
iTemp=a[i]; /*抽出要插入的值*/
iPos=i-1;
while(iPos>=0&&iTemp>a[iPos])
{
a[iPos+1]=a[iPos]; /*不符合条件i前的元素后移一位*/
iPos--;
}
a[iPos+1]=iTemp; /*找到插入位置插入*/
}
for(i=0;i<6;i++)
cout<<a[i];
return 0;
}