CodeForces - 1102B Array K-Coloring
describe
You are given an array a consisting of n integer numbers.
You have to color this array in k colors in such a way that:
Each element of the array should be colored in some color;
For each i from 1 to k there should be at least one element colored in the i-th color in the array;
For each i from 1 to k all elements colored in the i-th color should be distinct.
Obviously, such coloring might be impossible. In this case, print “NO”. Otherwise print “YES” and any coloring (i.e. numbers c1,c2,…cn, where 1≤ci≤k and ci is the color of the i-th element of the given array) satisfying the conditions above. If there are multiple answers, you can print any.
Input
The first line of the input contains two integers n and k (1≤k≤n≤5000) — the length of the array a and the number of colors, respectively.
The second line of the input contains n integers a1,a2,…,an (1≤ai≤5000) — elements of the array a.
Output
If there is no answer, print “NO”. Otherwise print “YES” and any coloring (i.e. numbers c1,c2,…cn, where 1≤ci≤k and ci is the color of the i-th element of the given array) satisfying the conditions described in the problem statement. If there are multiple answers, you can print any.
Examples
4 2
1 2 2 3
YES
1 1 2 2
5 2
3 2 1 2 3
YES
2 1 1 2 1
5 2
2 1 1 2 1
NO
Note
In the first example the answer 2 1 2 1 is also acceptable.
In the second example the answer 1 1 1 2 2 is also acceptable.
There exist other acceptable answers for both examples.
这是一道简单的思维题,题意是说有w个数字,n种颜色,刷漆,每种颜色的油漆刷的元素必须不同。我写的应该算得上简单了,也容易理解,因为给的数值范围很小,所以也不用离散化直接用数组代表出现的次数,先用了一个ob[]数组,记录这个数字出现的次数,再用一个ans数组记录它的颜色,这时候你会发现这题好简单,出现1次颜色是1,出现两次颜色是2,出现次数超过给定颜色,不成立输出NO,好了你成功入坑了,这个题要求每个颜色至少使用一次,做了一个小操作,详情看代码!这是你觉得万事大吉了,WA四次终于明白,原来当颜色比数字多的时候,永远可能使每个颜色至少使用一次,现在题意跟坑清晰了,可以敲代码了。
AC code
#include<iostream>
#include<cstring>
using namespace std;
#define mst(a,b) memset((a),(b),sizeof(a))
int ob[5050],ans[5050],ao[5050];
int main()
{
int n,w,x,flag=1,flag2=0;
mst(ans,0);
mst(ob,0);
cin>>n>>w;
if(n<w) flag=0;
for(int i=1;i<=n;i++){
cin>>x;
ob[x]++;
ans[i]=ob[x];
ao[ans[i]]++;
flag2=max(flag2,ans[i]);
if(ob[x]>w) flag=0;
}
int t=1;
if(flag){
while(flag2!=w){
if(ao[ans[t]]>=2){
ao[ans[t]]--;
ans[t++]=++flag2;
}
else t++;
}
cout<<"YES"<<endl;
for(int i=1;i<=n;i++) cout<<ans[i]<<' ';
return 0;
}
else cout<<"NO";
return 0;
}