【项目实战】Kaggle泰坦尼克号的幸存者预测
前言
这是学习视频中留下来的一个作业,我决定根据大佬的步骤来一步一步完成整个项目,项目的下载地址如下:https://www.kaggle.com/c/titanic/data
大佬的传送门:https://zhuanlan.zhihu.com/p/338974416
查看数据
首先我们打开训练集,看到的数据如下
我们可以看到这个数据集里面的特征类别有,乘客序号,是否存活,船票等级,性别,年龄,在船上的亲属数量,票的号码,票价,座舱号,和登船地
所以我们需要判定哪些数据是有效的
读取数据
import re //正则表达式的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns //画图用的一个库
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
print('训练集:', train.shape, '测试集', test.shape)
total_data = train.append(test, sort=False, ignore_index=True) //需要添加的index不出现重复
可以看到我们的数据规模
然后我们查看我们数据的摘要信息
train.info()
print("-" * 40)//方便阅读输入的分隔符
test.info()
这里可以明显看出,在训练集中,年龄、座舱号、目的地有缺失值
而在测试集中,年龄、票价、座舱号有缺失值
特征工程
查看总体幸存比例
total_data['Survived'].value_counts().plot.pie(autopct='%1.2f%%') //这里的正则表达式表示小数点后保留两位
plt.show()
这里再查看性别与存活率的关系
print(total_data.groupby(['Sex'])['Survived'].agg(['count', 'mean'])) //groupby来挑选组别,agg定义输出列的名称
sns.countplot(x='Sex',hue= 'Survived', data=total_data)
显然女性在登船率低于男性的情况下存活率远高于男性,所以性别是个很重要的特征
然后我们来看目的地对于存活率是否有影响,首先看看数据的概况
print(total_data['Embarked'].value_counts())
但是这里的embarked是有缺失值的,因此用众数填充Embarked空值(从哪来人最多,那就默认不知道哪里的人就从那里来里)
然后查看不同地区登船的人与存活率关系
total_data['Embarked'].fillna(
total_data.Embarked.mode().values[0], inplace=True) //TURE表示直接替换原来的值
print(total_data.groupby(['Embarked'])['Survived'].agg(['count', 'mean']))
plt.figure(figsize=(10, 5))
sns.countplot(x='Embarked', hue='Survived', data=total_data)
plt.title('Embarked and Survived')
可以看出,C地登船的存活率最高、其次为Q地登船、S地登船人数最多但存活率最低
这里Cabin缺失比较多,用Unknown替代缺失值
total_data['Cabin'].fillna('U', inplace=True)
total_data['Cabin'] = total_data['Cabin'].map(
lambda x: re.compile('([a-zA-Z]+)').search(x).group()) ///正则表达式把船票的第一个字母取出来
print(total_data.groupby(['Cabin'])['Survived'].agg(['count', 'mean']))
不难看出BDE的存活率比较高
再看看不同票等级生存的分布与不同票等级生存的几率
print(total_data.groupby(['Pclass'])['Survived'].agg(['count', 'mean']))
plt.figure(figsize=(10, 5))
sns.countplot(x='Pclass', hue='Survived', data=total_data)
plt.title('Pclass and Survived')
plt.show()
票等级越高存活率就越高
再来填充空白的票价
total_data['Fare'] = total_data[['Fare']].fillna(
total_data.groupby('Pclass').transform(np.mean)) //把票类别所在的所有票价求均值填充
来查看票价分布
然后合并家庭人数
total_data['Family_Size'] = total_data['Parch'] + total_data['SibSp'] + 1
继续用众数填充年龄缺失值(方法不好,但是也勉强能用)
total_data['Age'].fillna(
total_data.Age.mode().values[0], inplace=True)
转变
其实做到这里发现已经做不下去了,文章给的一些处理数据方法远远超出了我的认知(巨大的打击),重新寻求一番后,发现了这个文章,适用于我来操作
https://blog.csdn.net/Learning_AI/article/details/122460458
首先我简述一下几个点,我独立在处理这些数据时有几个问题没有解决,但是文章代码给了很好的解决方案,记录一下
- 字段类型转换: 由于男女属于string类型,所以不能直接读取,我甚至想搞一个词典函数来分开读取,结果作者直接用get_dummies来转换成一个独热向量解决了,亏我还是nlp的,太尴尬了
- 选取需要的行和列: 我想了很久,在之前的代码上,把np.loadtxt改了又改加了又加,不断切片,数序号,结果根本不用这么麻烦,直接用xy全部读取,然后专门用一个feature元组存特征,再用np.array来读取,究其原因还是自己之前学numpy和pandas的时候太急了,导致自己现在菜的一,总之就是后悔,非常后悔
下面是代码部分
class TitanicDataset(Dataset):
def __init__(self, filepath):
xy = pd.read_csv(filepath)
# xy.shape()可以得到xy的行列数
self.len = xy.shape[0]
# 选取相关的数据特征
feature = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
# np.array()将数据转换成矩阵,方便进行接下来的计算
# 要先进行独热表示,然后转化成array,最后再转换成矩阵
self.x_data = torch.from_numpy(np.array(pd.get_dummies(xy[feature])))
self.y_data = torch.from_numpy(np.array(xy["Survived"]))
# getitem函数,可以使用索引拿到数据
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
# 返回数据的条数/长度
def __len__(self):
return self.len
然后
# 实例化自定义类,并传入数据地址
dataset = TitanicDataset('train.csv')
# num_workers是否要进行多线程服务,num_worker=2 就是2个进程并行运行
# 采用Mini-Batch的训练方法
train_loader = DataLoader(dataset=dataset, batch_size=16, shuffle=True, num_workers=0)
然后来定义模型
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
# 要先对选择的特征进行独热表示计算出维度,而后再选择神经网络开始的维度
self.linear1 = torch.nn.Linear(6, 3)
self.linear2 = torch.nn.Linear(3, 1)
self.sigmoid = torch.nn.Sigmoid()
# 前馈
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
return x
由于有测试集,所以还需要写一个测试函数
def test(self, x):
with torch.no_grad():##在使用pytorch时,并不是所有的操作都需要进行计算图的生成(计算过程的构建,以便梯度反向传播等操作)。而对于tensor的计算操作,默认是要进行计算图的构建的,在这种情况下,可以使用 with torch.no_grad():,强制之后的内容不进行计算图构建
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
y = []
# 根据二分法原理,划分y的值
for i in x:
if i > 0.5:
y.append(1)
else:
y.append(0)
return y
然后实例化模型,定义损失函数,优化器
# 实例化模型
model = Model()
# 定义损失函数
criterion = torch.nn.BCELoss(reduction='mean')
# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
开始训练
if __name__ == '__main__':
# 采用Mini-Batch的方法训练要采用多层嵌套循环
# 所有数据都跑100遍
for epoch in range(400):
# data从train_loader中取出数据(取出的是一个元组数据):(x,y)
# enumerate可以获得当前是第几次迭代,内部迭代每一次跑一个Mini-Batch
for i, data in enumerate(train_loader, 0):
# inputs获取到data中的x的值,labels获取到data中的y值
x, y = data
x = x.float() //需要转换类型,不然会报错
y = y.float()
y_pred = model(x)
y_pred = y_pred.squeeze(-1) //把y降维
loss = criterion(y_pred, y)
print(epoch, i, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
最后把测试集传进去
test_data = pd.read_csv('test.csv')
feature = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
test = torch.from_numpy(np.array(pd.get_dummies(test_data[feature])))
y = model.test(test.float())
输出结果为csv
# 输出预测结果
output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': y})
output.to_csv('my_predict.csv', index=False)
最终kaggle得分
随机梯度下降,学习率0.01,训练100次
小批量梯度下降,学习率0.01,训练200次
后记
我又把代码改了改了,搞成了全梯度下降
具体代码如下
import numpy as np
import pandas as pd
import torch
xy = pd.read_csv('train.csv')
len = xy.shape[0]
feature = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
x_data = torch.from_numpy(np.array(pd.get_dummies(xy[feature])))
y_data = torch.from_numpy(np.array(xy["Survived"]))
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
# 要先对选择的特征进行独热表示计算出维度,而后再选择神经网络开始的维度
self.linear1 = torch.nn.Linear(6, 3)
self.linear2 = torch.nn.Linear(3, 1)
self.sigmoid = torch.nn.Sigmoid()
# 前馈
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
return x
# 测试函数
def test(self, x):
with torch.no_grad():
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
y = []
# 根据二分法原理,划分y的值
for i in x:
if i > 0.5:
y.append(1)
else:
y.append(0)
return y
# 实例化模型
model = Model()
# 定义损失函数
criterion = torch.nn.BCELoss(reduction='mean')
# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 防止windows系统报错
if __name__ == '__main__':
# 采用Mini-Batch的方法训练要采用多层嵌套循环
# 所有数据都跑100遍
# plt.show()
for epoch in range(200000):
x_data = x_data.float()
y_data = y_data.float()
y_pred = model(x_data)
y_pred = y_pred.squeeze(-1)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 测试
test_data = pd.read_csv('test.csv')
feature = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
test = torch.from_numpy(np.array(pd.get_dummies(test_data[feature])))
y = model.test(test.float())
# 输出预测结果
output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': y})
output.to_csv('my_predict.csv', index=False)
帅的嘛还就不谈了!
但是这里还是有个问题
因为我学习的时候,明明随机梯度下降更加精确,因为随机梯度下降可以逃离局部最优点,但是为什么这里的得分反而是全梯度下降高呢?
我想了想我终于明白了,tmd因为我全梯度训练了20w次,搁谁谁不高
我换成了400次,果然,0.63分
好了,没问题了
本文来自博客园,作者:Lugendary,转载请注明原文链接:https://www.cnblogs.com/lugendary/p/16147007.html