【学习笔记】 决策树算法原理
决策树ID3算法
算法的过程为:
1)初始化信息增益的阈值ϵ
2)判断样本是否为同一类输出Di,如果是则返回单节点树T。标记类别为Di
3) 判断特征是否为空,如果是则返回单节点树T,标记类别为样本中输出类别D实例数最多的类别。
4)计算A中的各个特征(一共n个)对输出D的信息增益,选择信息增益最大的特征Ag
5) 如果Ag的信息增益小于阈值ϵ,则返回单节点树T,标记类别为样本中输出类别D实例数最多的类别。
6)否则,按特征Ag的不同取值Agi将对应的样本输出D分成不同的类别Di。每个类别产生一个子节点。对应特征值为Agi。返回增加了节点的数T。
7)对于所有的子节点,令D=Di,A=A−{Ag}递归调用2-6步,得到子树Ti并返回。
我的理解是,从根节点开始逐层往下,不停的计算接下来要分类的特征的熵,选取熵最大的,也就是能够最快的做出分类的那一类分类方法
这样的话也就好理解ID3算法的种种不足了
- ID3没有考虑连续特征,比如长度,密度都是连续值,无法在ID3运用。这大大限制了ID3的用途。
- ID3采用信息增益大的特征优先建立决策树的节点。很快就被人发现,在相同条件下,取值比较多的特征比取值少的特征信息增益大。比如一个变量有2个值,各为1/2,另一个变量为3个值,各为1/3,其实他们都是完全不确定的变量,但是取3个值的比取2个值的信息增益大。如果校正这个问题呢?
- ID3算法对于缺失值的情况没有做考虑
- 没有考虑过拟合的问题
这里单独说一下对第二点的理解,就是当有一些明明完全不确定的变量出现的时候,ID3算法还是会顽固的根据数量多的数据来取信息增益,这样的出来的结论就会有极大的偶然性
决策树C4.5算法
ID3算法有四个主要的不足,一是不能处理连续特征,第二个就是用信息增益作为标准容易偏向于取值较多的特征,最后两个是缺失值处理的问和过拟合问题。昆兰在C4.5算法中改进了上述4个问题
- 对于第一个问题,不能处理连续特征, C4.5的思路是将连续的特征离散化。比如m个样本的连续特征A有m个,从小到大排列为a1,a2,...,am,则C4.5取相邻两样本值的平均数,一共取得m-1个划分点,分别计算以该点作为二元分类点时的信息增益。选择信息增益最大的点作为该连续特征的二元离散分类点。比如取到的增益最大的点为at,则小于at的值为类别1,大于at的值为类别2,这样我们就做到了连续特征的离散化。要注意的是,与离散属性不同的是,如果当前节点为连续属性,则该属性后面还可以参与子节点的产生选择过程。
- 对于第二个问题,信息增益作为标准容易偏向于取值较多的特征的问题。我们引入一个信息增益比的变量IR(X,Y),它是信息增益和特征熵的比值。特征数越多的特征对应的特征熵越大,它作为分母,可以校正信息增益容易偏向于取值较多的特征的问题。
- 对于第三个缺失值处理的问题,主要需要解决的是两个问题,一是在样本某些特征缺失的情况下选择划分的属性,二是选定了划分属性,对于在该属性上缺失特征的样本的处理。
对于第一个子问题,对于某一个有缺失特征值的特征A。C4.5的思路是将数据分成两部分,对每个样本设置一个权重(初始可以都为1),然后划分数据,一部分是有特征值A的数据D1,另一部分是没有特征A的数据D2. 然后对于没有缺失特征A的数据集D1来和对应的A特征的各个特征值一起计算加权重后的信息增益比,最后乘上一个系数,这个系数是无特征A缺失的样本加权后所占加权总样本的比例。
对于第二个子问题,可以将缺失特征的样本同时划分入所有的子节点,不过将该样本的权重按各个子节点样本的数量比例来分配。比如缺失特征A的样本a之前权重为1,特征A有3个特征值A1,A2,A3。 3个特征值对应的无缺失A特征的样本个数为2,3,4.则a同时划分入A1,A2,A3。对应权重调节为2/9,3/9, 4/9。 - 对于第4个问题,C4.5引入了正则化系数进行初步的剪枝。CART会详细讨论剪枝的思路。
除了上面的4点,C4.5和ID的思路区别不大。
简单概述一下这四个方法,
第一个问题的解决方案就是将连续的特征离散化,但是由于其实我不是很懂连续性是什么意思,所以只能大致了解一下
第二个问题的解决办法是把数值的个数也作为变量加进去,把原来的结果变成一个比值,这样就相当于降低了数据少的数据所带来的影响
第三个问题的解决办法是对数据加入权重,缺失值的数据权重降低
第四个问题的解决办法是CART剪枝
决策树C4.5算法的不足与思考
- 由于决策树算法非常容易过拟合,因此对于生成的决策树必须要进行剪枝。剪枝的算法有非常多,C4.5的剪枝方法有优化的空间。思路主要是两种,一种是预剪枝,即在生成决策树的时候就决定是否剪枝。另一个是后剪枝,即先生成决策树,再通过交叉验证来剪枝。后面在下篇讲CART树的时候我们会专门讲决策树的减枝思路,主要采用的是后剪枝加上交叉验证选择最合适的决策树。
- C4.5生成的是多叉树,即一个父节点可以有多个节点。很多时候,在计算机中二叉树模型会比多叉树运算效率高。如果采用二叉树,可以提高效率。
- C4.5只能用于分类,如果能将决策树用于回归的话可以扩大它的使用范围。
- C4.5由于使用了熵模型,里面有大量的耗时的对数运算,如果是连续值还有大量的排序运算。如果能够加以模型简化可以减少运算强度但又不牺牲太多准确性的话,那就更好了。
CART剪枝
- 所谓的分类树,实际上就是把每个特征基尼指数乘以数据所占的比值,然后得出来最小的那个作为分类,在那个分类里面再用上面方法进行筛选,一直到最后,在画出树
- 而解决回归问题的时候和分类树类似,只是使用不同的公式(平方误差)来不断的确定切分点,每个点上会有一个值,这个值对应的是那个区域的值的平均值
剪枝
由于决策时算法很容易对训练集过拟合,而导致泛化能力差,为了解决这个问题,我们需要对CART树进行剪枝,即类似于线性回归的正则化,来增加决策树的泛化能力。但是,有很多的剪枝方法,我们应该这么选择呢?CART采用的办法是后剪枝法,即先生成决策树,然后产生所有可能的剪枝后的CART树,然后使用交叉验证来检验各种剪枝的效果,选择泛化能力最好的剪枝策略。也就是说,CART树的剪枝算法可以概括为两步,第一步是从原始决策树生成各种剪枝效果的决策树,第二部是用交叉验证来检验剪枝后的预测能力,选择泛化预测能力最好的剪枝后的数作为最终的CART树。
缺点
无论是ID3, C4.5还是CART,在做特征选择的时候都是选择最优的一个特征来做分类决策,但是大多数,分类决策不应该是由某一个特征决定的,而是应该由一组特征决定的。这样决策得到的决策树更加准确。这个决策树叫做多变量决策树(multi-variate decision tree)。在选择最优特征的时候,多变量决策树不是选择某一个最优特征,而是选择最优的一个特征线性组合来做决策。这个算法的代表是OC1,这里不多介绍。
如果样本发生一点点的改动,就会导致树结构的剧烈改变。这个可以通过集成学习里面的随机森林之类的方法解决。
小结
cart具体方法没整明白,但是思路懂了,其他都还可以
本文来自博客园,作者:Lugendary,转载请注明原文链接:https://www.cnblogs.com/lugendary/p/16024117.html