动态规划:不同路径

62. 不同路径

一个机器人位于一个m x n网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

输入:m = 3, n = 7
输出:28

思路

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

动规五部曲

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  2. 确定递推公式
    想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
    那么dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  3. dp数组的初始化
    首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

  4. 确定遍历顺序
    先看一下递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
    这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  5. 举例推导dp数组

代码

class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        for (int i = 0; i < n; i++) dp[0][i] = 1;
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];  
    }
}
posted @ 2021-06-27 22:44  当康  阅读(39)  评论(0编辑  收藏  举报