多线程的基本概念

进程和线程

进程

进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。

在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。

线程

线程与进程相似,但线程是一个比进程更小的执行单位。

一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的堆和方法区资源,但每个线程有自己的程序计数器、虚拟机栈和本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。

JMX

JMX最常见的场景是监控Java程序的基本信息和运行情况,任何Java程序都可以开启JMX。

通过 JMX 查看一个普通的 Java 程序有哪些线程:

public class MultiThread {
    public static void main(String[] args) {
        // 获取 Java 线程管理 MXBean
        ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();
        // 不需要获取同步的 monitor 和 synchronizer 信息,仅获取线程和线程堆栈信息
        ThreadInfo[] threadInfos = threadMXBean.dumpAllThreads(false, false);
        // 遍历线程信息,仅打印线程 ID 和线程名称信息
        for (ThreadInfo threadInfo : threadInfos) {
            System.out.println("[" + threadInfo.getThreadId() + "] " +
                    threadInfo.getThreadName());

        }
    }
}

输出:

[5] Monitor Ctrl-Break  //idea中特有的线程
[4] Signal Dispatcher //分发处理给 JVM 信号的线程 
[3] Finalizer //调用对象 finalize 方法的线程
[2] Reference Handler //清除 reference 线程
[1] main //main 线程,程序入口

可以看出一个 Java 程序的运行是 main 线程和多个其他线程同时运行。

并发和并行

并发和并行是两个非常容易被混淆的概念。它们都可以表示两个或者多个任务一起执行,但是侧重点有所不同。并发偏重于多个任务交替执行,而多个任务之间有可能还是串行的,而并行是真正意义上的“同时执行”。

从严格意义上来说,并行的多个任务是真的同时执行,而对于并发来说,这个过程只是交替的,一会儿执行任务A,一会儿执行任务B,系统会不停地在两者之间切换。但对于外部观察者来说,即使多个任务之间是串行并发的,也会造成多任务间并行执行的错觉。

临界区

临界区用来表示一种公共资源或者说共享数据,可以被多个线程使用。但是每一次,只能有一个线程使用它,一旦临界区资源被占用,其他线程要想使用这个资源就必须等待。

在并行程序中,临界区资源是保护的对象,如果意外出现打印机同时执行两个打印任务的情况,那么最可能的结果就是打印出来的文件是损坏的文件。

阻塞和非阻塞

阻塞和非阻塞通常用来形容多线程间的相互影响。比如一个线程占用了临界区资源,那么其他所有需要这个资源的线程就必须在这个临界区中等待。等待会导致线程挂起,这种情况就是阻塞。此时,如果占用资源的线程一直不愿意释放资源,那么其他所有阻塞在这个临界区上的线程都不能工作。

非阻塞的意思与之相反,它强调没有一个线程可以妨碍其他线程执行,所有的线程都会尝试不断前向执行。

死锁、饥饿和活锁

死锁、饥饿和活锁都属于多线程的活跃性问题。

死锁

多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。

线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方的资源,所以这两个线程就会互相等待而进入死锁状态。

public class DeadLockDemo {
    private static Object resource1 = new Object();//资源 1
    private static Object resource2 = new Object();//资源 2

    public static void main(String[] args) {
        new Thread(() -> {
            synchronized (resource1) {
                System.out.println(Thread.currentThread() + "get resource1");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resource2");
                synchronized (resource2) {
                    System.out.println(Thread.currentThread() + "get resource2");
                }
            }
        }, "线程 1").start();
        new Thread(() -> {
            synchronized (resource2) {
                System.out.println(Thread.currentThread() + "get resource2");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resource1");
                synchronized (resource1) {
                    System.out.println(Thread.currentThread() + "get resource1");
                }
            }
        }, "线程 2").start();
    }
}

输出:

Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1

饥饿

饥饿是指某一个或者多个线程因为种种原因无法获得所需要的资源,导致一直无法执行。

比如它的线程优先级可能太低,而高优先级的线程不断抢占它需要的资源,导致低优先级线程无法工作。此外,某一个线程一直占着关键资源不放,导致其他需要这个资源的线程无法正常执行,这种情况也是饥饿的一种。

活锁

如果线程都秉承着“谦让”的原则,主动将资源释放给他人使用,那么就会导致资源不断地在两个线程间跳动,而没有一个线程可以同时拿到所有资源正常执行。这种情况就是活锁。

并发级别

由于临界区的存在,多线程之间的并发必须受到控制。根据控制并发的策略,我们可以把并发的级别分为阻塞、无饥饿、无障碍、无锁、无等待几种。

阻塞

一个线程是阻塞的,那么在其他线程释放资源之前,当前线程无法继续执行。当我们使用synchronized关键字或者重入锁时,我们得到的就是阻塞的线程。

synchronized关键字和重入锁都试图在执行后续代码前,得到临界区的锁,如果得不到,线程就会被挂起等待,直到占有了所需资源为止。

无饥饿

如果线程之间是有优先级的,那么线程调度的时候总是会倾向于先满足高优先级的线程。

对于非公平锁来说,系统允许高优先级的线程插队。这样有可能导致低优先级线程产生饥饿。但如果锁是公平的,按照先来后到的规则,那么饥饿就不会产生,不管新来的线程优先级多高,要想获得资源,就必须乖乖排队,这样所有的线程都有机会执行。

无障碍

无障碍是一种最弱的非阻塞调度。两个线程如果无障碍地执行,那么不会因为临界区的问题导致一方被挂起。大家可以一起进入临界区修改共享数据,当数据改坏了时,它就会立即对自己所做的修改进行回滚,确保数据安全。但如果没有数据竞争发生,那么线程就可以顺利完成自己的工作,走出临界区。

如果说阻塞的控制方式是悲观策略,也就是说,系统认为两个线程之间很有可能发生不幸的冲突,因此以保护共享数据为第一优先级,相对来说,非阻塞的调度就是一种乐观的策略。它认为多个线程之间很有可能不会发生冲突,或者说这种概率不大。因此大家都应该无障碍地执行,但是一旦检测到冲突,就应该进行回滚。

一种可行的无障碍实现可以依赖一个“一致性标记”来实现。线程在操作之前,先读取并保存这个标记,在操作完成后,再次读取,检查这个标记是否被更改过,如果两者是一致的,则说明资源访问没有冲突。如果不一致,则说明资源可能在操作过程中与其他写线程冲突,需要重试操作。而任何对资源有修改操作的线程,在修改数据前,都需要更新这个一致性标记,表示数据不再安全。

无锁

无锁的并行都是无障碍的。在无锁的情况下,所有的线程都能尝试对临界区进行访问,但不同的是,无锁的并发保证必然有一个线程能够在有限步内完成操作离开临界区。

在无锁的调用中,一个典型的特点是可能会包含一个无穷循环。在这个循环中,线程会不断尝试修改共享变量。如果没有冲突,修改成功,那么程序退出,否则继续尝试修改。但无论如何,无锁的并行总能保证有一个线程是可以胜出的,不至于全军覆没。至于临界区中竞争失败的线程,它们必须不断重试,直到自己获胜。如果运气很不好,总是尝试不成功,则会出现类似饥饿的现象,线程会停止。

无等待

无锁只要求有一个线程可以在有限步内完成操作,而无等待则在无锁的基础上更进一步扩展。它要求所有的线程都必须在有限步内完成,这样就不会引起饥饿问题。

posted @ 2021-05-18 16:44  当康  阅读(88)  评论(0编辑  收藏  举报