Redis实战-BloomFilter
1. 简介
布隆过滤器是防止缓存穿透的方案之一。布隆过滤器主要是解决大规模数据下不需要精确过滤的业务场景,如检查垃圾邮件地址,爬虫URL地址去重, 解决缓存穿透问题等。
布隆过滤器:在一个存在一定数量的集合中过滤一个对应的元素,判断该元素是否一定不在集合中或者可能在集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
想详细了解的,可以查看我的另一篇博客Redis-缓存穿透/击穿/雪崩。
2. guava 实现
google的guava工具类已经帮我们造好了轮子,通过实例来感受一下。
2.1 导入依赖
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>30.1.1-jre</version>
</dependency>
2.2 BloomFilterTest
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import lombok.extern.slf4j.Slf4j;
/**
* 布隆过滤器简单实现
* @author ludangxin
* @date 2021/8/16
*/
@Slf4j
public class BloomFilterTest {
/**
* 预计要插入元素个数
*/
private static final int SIZE = 1000000;
/**
* 误判率
*/
private static final double FPP = 0.01;
/**
* 布隆过滤器
*/
private static final BloomFilter<Integer> BLOOMFILTER = BloomFilter.create(Funnels.integerFunnel(), SIZE, FPP);
public static void main(String[] args) {
//插入数据
for (int i = 0; i < 1000000; i++) {
BLOOMFILTER.put(i);
}
int count = 0;
// 过滤判断
for (int i = 1000000; i < 3000000; i++) {
if (BLOOMFILTER.mightContain(i)) {
count++;
log.info(i + "误判了");
}
}
log.info("总共的误判数:" + count);
}
}
2.3 启动测试
如上代码,我们设置了0.01的误差,过滤判断时从1000000到3000000,误判了2 * 20000000 ≈ 20339 符合预期。
.....
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999004误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999045误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999219误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999699误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999753误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999838误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999923误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999928误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 总共的误判数:20339
2.4 小节
guava的工具包虽然好用,但是数据集是存储在jvm中的,分布式环境下依然没法使用。
3. redisson 实现
3.1 导入依赖
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson-spring-boot-starter</artifactId>
<version>3.16.1</version>
</dependency>
3.2 BloomFilterWithRedisson
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
/**
* redisson 布隆过滤器实现
*
* @author ludangxin
* @date 2021/8/16
*/
@Slf4j
@RestController
@RequestMapping("bloomFilter")
@RequiredArgsConstructor
public class BloomFilterWithRedisson {
private final RedissonClient redissonClient;
/**
* 预计要插入元素个数
*/
private static final long SIZE = 1000000L;
/**
* 误判率
*/
private static final double FPP = 0.01;
/**
* 自定义布隆过滤器的 key
*/
private static final String BLOOM_FILTER_KEY = "bloomFilter";
/**
* 向布隆过滤器中添加数据, 模拟向布隆过滤器中添加10亿个数据
*/
@GetMapping
public void filter() {
// 获取布隆过滤器
RBloomFilter<Integer> bloomFilter = redissonClient.getBloomFilter(BLOOM_FILTER_KEY);
// 初始化,容量为100万, 误判率为0.01
bloomFilter.tryInit(SIZE, FPP);
// 模拟向布隆过滤器中添加100万个数据
for (int i = 0; i < SIZE; i++) {
bloomFilter.add(i);
}
int count = 0;
// 过滤判断
for (int i = 1000000; i < 3000000; i++) {
if (bloomFilter.contains(i)) {
count++;
log.info(i + "误判了");
}
}
log.info("size:" + bloomFilter.getSize());
log.info("总共的误判数:" + count);
}
}
3.3 启动测试
由于机器性能有限,又是单机环境,所以程序没有跑完。
但由此也可以看出,基于redis的布隆过滤器虽然解决了分布式问题,但是性能和guava bloomfilter没法比。