深度学习笔记11-循环神经网络(RNN)和长短时记忆(LSTM)----非常经典

1.RNN的典型应用

(1)机器翻译,序列到序列(自然语言处理,NLP)

 

(2)看图说话,就是描述图片的内容。

2.RNN的应用背景

 

RNN与CNN最大的不同就是引入了记忆的概念,就是输出依赖输入和记忆。

3.RNN的结构

 

注意:St公式中的U和W表示权重矩阵,Ot公式中的V也是权重矩阵。

RNN结构补充说明:

4.双向RNN

注意:,分别表示从左往右的结果,和从右往左的结果,然后这两个结果做拼接。

5.RNN与BPTT算法

 

由于s2是关于W的函数,所以s3对W求偏导必须往前追溯(复合函数求导)

6.LSTM应用背景

7. LSTM的结构理解

(1)ct-1为输入,ct为输出

(2)几个关键门与操作

<1>忘记门

<2>细胞状态更新准备

上图中,it是一个[0,1]之间的概率P,Ct表示Xt时刻所获取的信息(可以形象的理解为六年级一年学习的知识)

Ct可以理解为当年学习的所有的知识,it表示把当年学习的所有知识Ct进行过滤的概率向量,实现将Ct中的新知识添加到以前的记忆中(即对六年级的知识有选择的添加到记忆中)。

<3>更新细胞状态

上图中的Ct公式参数说明:

ft表示旧信息的通过率,Ct-1表示旧信息的所有内容,it新增信息的筛选器,Ct表示新增的所有信息。

<4>获取输出

8.LSTM的几种变体

 

posted @   雨后观山色  阅读(731)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
点击右上角即可分享
微信分享提示