深度学习笔记10-词嵌入和word2vec-第2部分(NLP领域)
分析步骤:
第一步:将one-hot形式分词结果作为输入([0,1,0....,0]的列向量的V*1维词向量),与投影矩阵C(D*V维度)相乘,得到D*1维的向量
第2步:将第一步的输出结果做拼接,作为隐藏层的输入。
第3步:经过一个全连接的神经网络,经过激励层,再softmax,得到该词出现的概率矩阵和互熵损失。不断训练输出结果,改善权重矩阵C(可以发现C的列向量就是该词的词向量表现形式)
分类:
深度学习与自然语言处理
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)