机器学习kNN
from numpy import * import operator def createDataSet(): group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] print dataSetSize diffMat = tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis = 1) distances = sqDistances ** 0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 soredClassCount = sorted(classCount.iteritems(), key = operator.itemgetter(1), reverse = True) return soredClassCount[0][0] if __name__=="__main__": group, labels = createDataSet() res = classify0([0,0], group, labels, 3) print res
kNN算法,找出距离最近的k个,label出现次数最多的
1. 需要手工标注部分数据,表明数据集是哪些分类
2. 计算(x1, x2, ...xn)到每个点的距离, 找出距离最近的, 距离最近的分类为计算点的分类
Please call me JiangYouDang!