多级评论接口数据的处理方法
多级评论,采用列表嵌套字典,循环字典,自关联字段,循环添加,根据内存地址一致保持数据一致性
from api import models
from rest_framework import serializers
class ListCommentSerializer(serializers.ModelSerializer):
create_datetime = serializers.DateTimeField(format="%Y-%m-%d %H:%M:%S")
children = serializers.SerializerMethodField()
class Meta:
model = models.Comment
fields = ['create_datetime', 'reply', 'content', 'children']
def get_children(self, obj):
# 获取当前根评论的所有的子孙评论(后台)
descendant_queryset = models.Comment.objects.filter(root=obj).order_by('id')
descendant_dict = {}
"""
{
11:{"reply":2,children:[],"content":"oooadfa","depth":1,"create_datetime":"2021-09-0122:32:22",
12:{"reply":2,children:[],"content":"oooadfa","depth":1,"create_datetime":"2021-09-0122:32:22"},
13:{"reply":11,children:[]"content":"gooadfa","depth":2,"create_datetime":"2021-09-01 22:32:22",
14:{"reply":12,children:[]"content":"oooadfa","depth":2,"create_datetime":"2021-09-0122:32:22"],
15:{"reply":13,children:[]"content":"gooadfa","depth":3,"create_datetime":"2021-09-01 22:32:22"],
16:{"reply":15,children:[]"content":"oooadfa","depth":4,"create_datetime":"2021-09-0122:32:22"],
}
"""
for descendant in descendant_queryset:
ser = CreateCommentSerializers(instance=descendant, many=False) # 构造序列化器
row = {'children': []}
row.update(ser.data)
descendant_dict[descendant.id] = row
# print(descendant_dict)
# 根评论obj的1级评论
children_list = [
# {"reply": 2, children:[],"content": "oooadfa","depth": 1, "create_datetime": "2021-09-01 22:32:22"},
# {"reply": 2, children:[],"content": "oooadfa","depth": 1, "create_datetime": "2021-09-01 22:32:22"}
]
for cid, item in descendant_dict.items():
depth = item['depth'] # 获取评论深度
if depth == 1: # 将一级评论插入列表,[{'children': [],'reply': 2......],
children_list.append(item)
continue
reply_id = item['reply'] # 获取回复了一级评论的那条评论reply_id,并将该条评论插入到一级评论的children列表中
descendant_dict[reply_id]['children'].append(item)
return children_list
本文作者:晚点心动。
本文链接:https://www.cnblogs.com/lucky-tao/p/16642624.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义