Parquet && spark和Hive的问题排查
Parquet异常问题排查
问题异常如下:
Caused by: parquet.hadoop.MemoryManager$1: New Memory allocation 1044273 bytes is smaller than the minimum allocation size of 1048576 bytes.
at parquet.hadoop.MemoryManager.updateAllocation(MemoryManager.java:125)
at parquet.hadoop.MemoryManager.addWriter(MemoryManager.java:82)
at parquet.hadoop.ParquetRecordWriter.<init>(ParquetRecordWriter.java:104)
at parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:303)
at parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:267)
at org.apache.hadoop.hive.ql.io.parquet.write.ParquetRecordWriterWrapper.<init>(ParquetRecordWriterWrapper.java:65)
at org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat.getParquerRecordWriterWrapper(MapredParquetOutputFormat.java:125)
at org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat.getHiveRecordWriter(MapredParquetOutputFormat.java:114)
at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getRecordWriter(HiveFileFormatUtils.java:261)
at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:246)
... 19 more
定位异常的代码:
private void updateAllocation() {
...其他代码
for (Map.Entry<InternalParquetRecordWriter, Long> entry : writerList.entrySet()) {
long newSize = (long) Math.floor(entry.getValue() * scale);
if(scale < 1.0 && minMemoryAllocation > 0 && newSize < minMemoryAllocation) {
throw new ParquetRuntimeException(String.format("New Memory allocation %d bytes" +
" is smaller than the minimum allocation size of %d bytes.",
newSize, minMemoryAllocation)){};
}
entry.getKey().setRowGroupSizeThreshold(newSize);
LOG.debug(String.format("Adjust block size from %,d to %,d for writer: %s",
entry.getValue(), newSize, entry.getKey()));
}
}
抛出异常的检查条件 scale 小于1 并且 minMemoryAllocation 大于0 并且新申请的空间大小小于 minMemoryAllocation 的值。那么解决此问题的思路简单的看有两种方法
1. 将minMemoryAllocation 设置为0
2. 将minMemoryAllocation 设置的小一点,比新申请的空间大小还要小,具体的参考值,可以参考异常提示的值。
修改minMemoryAllocation的值通过
hiveContext.setConf("parquet.memory.min.chunk.size", (1024 * 32).toString)
设置,此处我设置了32K。问题得到了解决。
但是深入研究发现,其实 scale 小于1 ,也是触发此异常的关键,为什么要对此进行判断呢?
我们先看看scale是如何计算的?
long totalAllocations = 0;
double scale;
for (Long allocation : writerList.values()) {
totalAllocations += allocation;
}
if (totalAllocations <= totalMemoryPool) {
scale = 1.0;
} else {
scale = (double) totalMemoryPool / totalAllocations;
LOG.warn(String.format(
"Total allocation exceeds %.2f%% (%,d bytes) of heap memory\n" +
"Scaling row group sizes to %.2f%% for %d writers",
100*memoryPoolRatio, totalMemoryPool, 100*scale, writerList.size()));
}
此处显示当需要分配的内存大于等于系统总的内存时,scale的值会小于1.需要分配的内存通过writerList的值累加获取,那么writerList是什么呢?
/**
* Add a new writer and its memory allocation to the memory manager.
* @param writer the new created writer
* @param allocation the requested buffer size
*/
synchronized void addWriter(InternalParquetRecordWriter writer, Long allocation) {
Long oldValue = writerList.get(writer);
if (oldValue == null) {
writerList.put(writer, allocation);
} else {
throw new IllegalArgumentException("[BUG] The Parquet Memory Manager should not add an " +
"instance of InternalParquetRecordWriter more than once. The Manager already contains " +
"the writer: " + writer);
}
updateAllocation();
}
新增writer时,会增加需要分配的值,新增writer是如何触发的呢?
public ParquetRecordWriter(
ParquetFileWriter w,
WriteSupport<T> writeSupport,
MessageType schema,
Map<String, String> extraMetaData,
long blockSize, int pageSize,
BytesCompressor compressor,
int dictionaryPageSize,
boolean enableDictionary,
boolean validating,
WriterVersion writerVersion,
MemoryManager memoryManager) {
internalWriter = new InternalParquetRecordWriter<T>(w, writeSupport, schema,
extraMetaData, blockSize, pageSize, compressor, dictionaryPageSize, enableDictionary,
validating, writerVersion);
this.memoryManager = checkNotNull(memoryManager, "memoryManager");
memoryManager.addWriter(internalWriter, blockSize);
}
public RecordWriter<Void, T> getRecordWriter(Configuration conf, Path file, CompressionCodecName codec)
throws IOException, InterruptedException {
final WriteSupport<T> writeSupport = getWriteSupport(conf);
CodecFactory codecFactory = new CodecFactory(conf);
long blockSize = getLongBlockSize(conf);
if (INFO) LOG.info("Parquet block size to " + blockSize);
int pageSize = getPageSize(conf);
if (INFO) LOG.info("Parquet page size to " + pageSize);
int dictionaryPageSize = getDictionaryPageSize(conf);
if (INFO) LOG.info("Parquet dictionary page size to " + dictionaryPageSize);
boolean enableDictionary = getEnableDictionary(conf);
if (INFO) LOG.info("Dictionary is " + (enableDictionary ? "on" : "off"));
boolean validating = getValidation(conf);
if (INFO) LOG.info("Validation is " + (validating ? "on" : "off"));
WriterVersion writerVersion = getWriterVersion(conf);
if (INFO) LOG.info("Writer version is: " + writerVersion);
WriteContext init = writeSupport.init(conf);
ParquetFileWriter w = new ParquetFileWriter(conf, init.getSchema(), file);
w.start();
float maxLoad = conf.getFloat(ParquetOutputFormat.MEMORY_POOL_RATIO,
MemoryManager.DEFAULT_MEMORY_POOL_RATIO);
long minAllocation = conf.getLong(ParquetOutputFormat.MIN_MEMORY_ALLOCATION,
MemoryManager.DEFAULT_MIN_MEMORY_ALLOCATION);
if (memoryManager == null) {
memoryManager = new MemoryManager(maxLoad, minAllocation);
} else if (memoryManager.getMemoryPoolRatio() != maxLoad) {
LOG.warn("The configuration " + MEMORY_POOL_RATIO + " has been set. It should not " +
"be reset by the new value: " + maxLoad);
}
return new ParquetRecordWriter<T>(
w,
writeSupport,
init.getSchema(),
init.getExtraMetaData(),
blockSize, pageSize,
codecFactory.getCompressor(codec, pageSize),
dictionaryPageSize,
enableDictionary,
validating,
writerVersion,
memoryManager);
}
由此可见,随着writer创建的个数越来越多,导致申请的内存的数量超出了系统分配的数量,从而导致 scale 计算得到小于1的情况。而在我们的场景下,是因为采用了自动分区,由于创建分区的数量超出了我们设想的值,因此才触发此bug。为什么要这么设置呢?
我们看看下面代码:
entry.getKey().setRowGroupSizeThreshold(newSize);
最终设置的是 RowGroupSizeThreshold 的值,
private void checkBlockSizeReached() throws IOException {
if (recordCount >= recordCountForNextMemCheck) { // checking the memory size is relatively expensive, so let's not do it for every record.
long memSize = columnStore.getBufferedSize();
if (memSize > rowGroupSizeThreshold) {
LOG.info(format("mem size %,d > %,d: flushing %,d records to disk.", memSize, rowGroupSizeThreshold, recordCount));
flushRowGroupToStore();
initStore();
recordCountForNextMemCheck = min(max(MINIMUM_RECORD_COUNT_FOR_CHECK, recordCount / 2), MAXIMUM_RECORD_COUNT_FOR_CHECK);
} else {
float recordSize = (float) memSize / recordCount;
recordCountForNextMemCheck = min(
max(MINIMUM_RECORD_COUNT_FOR_CHECK, (recordCount + (long)(rowGroupSizeThreshold / recordSize)) / 2), // will check halfway
recordCount + MAXIMUM_RECORD_COUNT_FOR_CHECK // will not look more than max records ahead
);
if (DEBUG) LOG.debug(format("Checked mem at %,d will check again at: %,d ", recordCount, recordCountForNextMemCheck));
}
}
}
当内存的值超过阈值的时候,会自动触发将内存的数据flush到硬盘中,从而保证不会出现内存溢出的情况,所以writer越多,每个writer的阈值会越小。
总结一下:
当hive写入的时候,每增加一个分区时,会创建一个writer,而增加一个writer,会触发修改所有的writer的RowGroupSizeThreshold内存阈值,从而保证不会发生内存溢出的情况。
posted on 2017-04-17 11:13 luckuan1985 阅读(2493) 评论(0) 编辑 收藏 举报