RDD执行延迟执行原理

简化版的RDD执行延迟执行原理

package spark

import scala.collection.Iterator._

/**
  * Created by Kuan on 16/4/27.
  */
object ABC {

  def main(args: Array[String]) {
    val rdd = new HadoopRDD[Int]()
    rdd.map(x => x * 10).filter(x => {
      val ok = x > 20
      println(s"当前值是${x},是否满足条件呢[${ok}]")
      ok
    }).doRun
    println("*********************分隔符")
    rdd.filter(x => x > 3).doRun

    rdd.filter(x => {
      val ok = x > 3
      println(s"当前值是${x},是否满足条件呢[${ok}]")
      ok
    }).map(x => x * 20).doRun
  }
}

abstract class RDD[T](parent: RDD[T]) {
  def compute(): Iterator[T]

  def map(f: T => T): RDD[T] = {
    new MapRDD[T](this, f)
  }

  def filter(p: T => Boolean): RDD[T] = {
    new FilterRDD[T](this, p)
  }

  def iterator(): Iterator[T] = {
    //此处是简化版,spark的的参数是
    // split: Partition, context: TaskContext
    //此处可以看出,一个partition对应一个TaskContext,也就是说一个Task
    compute()
  }

  def doRun(): Unit = {
    println("doRun方法开始执行")
    val it = iterator()
    while (it.hasNext) {
      println(s"doRun方法打印值${it.next()}")
    }
    println("doRun方法执行结束")
  }
}

class MapRDD[T](var prev: RDD[T], f: T => T) extends RDD[T](prev) {

  override def compute(): Iterator[T] = {
    val it = prev.iterator()
    return new Iterator[T] {
      def hasNext: Boolean = {
        it.hasNext
      }

      def next(): T = {

        val ret = f(it.next())
        println(s"mapRDD next 返回${ret}")
        ret
      }
    }
  }

}

class FilterRDD[T](var prev: RDD[T], p: T => Boolean) extends RDD[T](prev) {

  override def compute(): Iterator[T] = {
    val it = prev.iterator()

    return new Iterator[T] {
      private var hd: T = _
      private var hdDefined: Boolean = false

      def hasNext: Boolean = {
        hdDefined || {
          do {
            if (!it.hasNext) return false
            hd = it.next()
          } while (!p(hd))
          hdDefined = true
          true
        }
      }

      def next(): T = {
        val ret = if (hasNext) {
          hdDefined = false;
          hd
        } else empty.next()

        println(s"FilterRDD next 返回${ret}")
        ret
      }
    }
  }

}

class HadoopRDD[Int]() extends RDD[Int](null) {

  override def compute(): Iterator[Int] = {
    return new Iterator[Int] {
      val it = List(1, 2, 3, 4, 5, 6).toIterator

      def hasNext: Boolean = {
        it.hasNext
      }

      def next(): Int = {
        val ret = it.next().asInstanceOf[Int]
        println(s"HadoopRDD next 返回${ret}")
        ret
      }
    }
  }
}

每个RDD在执行过程中,都会生成一个Iterator,涉及到的设计模式装饰模式。
只有当最后一个Iterator执行hasNext和next方法时,才会依次递归执行父RDD生成的Iterator的对应方法,然后在next方法中执行我们程序事先定义好的逻辑方法。比如map或者filter。此处最后一个RDD的doRun方法类似于spark的runJob方法。触发真正的逻辑执行。

posted on 2016-04-28 00:54  luckuan1985  阅读(476)  评论(0编辑  收藏  举报