spark的Task的序列化
Task类型
Spark一共有两种Task,一种是ResultTask,此Task只有job的最后一个stage才会生成,其他stage生成的Task是ShuffleTask。
Task生成
// TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
// Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
// the serialized copy of the RDD and for each task we will deserialize it, which means each
// task gets a different copy of the RDD. This provides stronger isolation between tasks that
// might modify state of objects referenced in their closures. This is necessary in Hadoop
// where the JobConf/Configuration object is not thread-safe.
//每个Task的环境是独立的,相互不影响的。
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] = stage match {
case stage: ShuffleMapStage =>
//此处将所有Task依赖的都给进行序列化,也会对闭包进行处理。
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
case stage: ResultStage =>
//此处将所有Task依赖的都给进行序列化,也会对闭包进行处理。
closureSerializer.serialize((stage.rdd, stage.func): AnyRef).array()
}
//将序列化好的对象进行广播
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
// In the case of a failure during serialization, abort the stage.
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString, Some(e))
runningStages -= stage
// Abort execution
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
}
//生成Task,分两种类型
val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.internalAccumulators)
}
case stage: ResultStage =>
val job = stage.activeJob.get
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, stage.internalAccumulators)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
}
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingPartitions ++= tasks.map(_.partitionId)
logDebug("New pending partitions: " + stage.pendingPartitions)
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None)
val debugString = stage match {
case stage: ShuffleMapStage =>
s"Stage ${stage} is actually done; " +
s"(available: ${stage.isAvailable}," +
s"available outputs: ${stage.numAvailableOutputs}," +
s"partitions: ${stage.numPartitions})"
case stage : ResultStage =>
s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
}
logDebug(debugString)
}
Task序列化
@throws[TaskNotSerializableException]
def resourceOffer(
execId: String,
host: String,
maxLocality: TaskLocality.TaskLocality)
: Option[TaskDescription] =
{
if (!isZombie) {
val curTime = clock.getTimeMillis()
var allowedLocality = maxLocality
if (maxLocality != TaskLocality.NO_PREF) {
allowedLocality = getAllowedLocalityLevel(curTime)
if (allowedLocality > maxLocality) {
// We're not allowed to search for farther-away tasks
allowedLocality = maxLocality
}
}
dequeueTask(execId, host, allowedLocality) match {
case Some((index, taskLocality, speculative)) => {
// Found a task; do some bookkeeping and return a task description
//找到一个任务,然后封装task的信息,包括序列化
val task = tasks(index)
val taskId = sched.newTaskId()
// Do various bookkeeping
copiesRunning(index) += 1
val attemptNum = taskAttempts(index).size
val info = new TaskInfo(taskId, index, attemptNum, curTime,
execId, host, taskLocality, speculative)
taskInfos(taskId) = info
taskAttempts(index) = info :: taskAttempts(index)
// Update our locality level for delay scheduling
// NO_PREF will not affect the variables related to delay scheduling
if (maxLocality != TaskLocality.NO_PREF) {
currentLocalityIndex = getLocalityIndex(taskLocality)
lastLaunchTime = curTime
}
// Serialize and return the task
val startTime = clock.getTimeMillis()
//此处将Task进行序列化
val serializedTask: ByteBuffer = try {
Task.serializeWithDependencies(task, sched.sc.addedFiles, sched.sc.addedJars, ser)
} catch {
// If the task cannot be serialized, then there's no point to re-attempt the task,
// as it will always fail. So just abort the whole task-set.
case NonFatal(e) =>
val msg = s"Failed to serialize task $taskId, not attempting to retry it."
logError(msg, e)
abort(s"$msg Exception during serialization: $e")
throw new TaskNotSerializableException(e)
}
//由于Task会有依赖关系,因此检查Task的大小是否超出,如果超出,打印警告
if (serializedTask.limit > TaskSetManager.TASK_SIZE_TO_WARN_KB * 1024 &&
!emittedTaskSizeWarning) {
emittedTaskSizeWarning = true
logWarning(s"Stage ${task.stageId} contains a task of very large size " +
s"(${serializedTask.limit / 1024} KB). The maximum recommended task size is " +
s"${TaskSetManager.TASK_SIZE_TO_WARN_KB} KB.")
}
addRunningTask(taskId)
// We used to log the time it takes to serialize the task, but task size is already
// a good proxy to task serialization time.
// val timeTaken = clock.getTime() - startTime
val taskName = s"task ${info.id} in stage ${taskSet.id}"
logInfo(s"Starting $taskName (TID $taskId, $host, partition ${task.partitionId}," +
s"$taskLocality, ${serializedTask.limit} bytes)")
sched.dagScheduler.taskStarted(task, info)
return Some(new TaskDescription(taskId = taskId, attemptNumber = attemptNum, execId,
taskName, index, serializedTask))
}
case _ =>
}
}
None
}
序列化代码
/**
* Serialize a task and the current app dependencies (files and JARs added to the SparkContext)
*/
def serializeWithDependencies(
task: Task[_],
currentFiles: HashMap[String, Long],
currentJars: HashMap[String, Long],
serializer: SerializerInstance)
: ByteBuffer = {
val out = new ByteArrayOutputStream(4096)
val dataOut = new DataOutputStream(out)
// Write currentFiles
dataOut.writeInt(currentFiles.size)
for ((name, timestamp) <- currentFiles) {
dataOut.writeUTF(name)
dataOut.writeLong(timestamp)
}
// Write currentJars
dataOut.writeInt(currentJars.size)
for ((name, timestamp) <- currentJars) {
dataOut.writeUTF(name)
dataOut.writeLong(timestamp)
}
// Write the task itself and finish
dataOut.flush()
val taskBytes = serializer.serialize(task).array()
out.write(taskBytes)
ByteBuffer.wrap(out.toByteArray)
}
TaskDescription
/**
* Description of a task that gets passed onto executors to be executed, usually created by
* [[TaskSetManager.resourceOffer]].
*/
private[spark] class TaskDescription(
val taskId: Long,
val attemptNumber: Int,
val executorId: String,
val name: String,
val index: Int, // Index within this task's TaskSet
_serializedTask: ByteBuffer)
extends Serializable {
// Because ByteBuffers are not serializable, wrap the task in a SerializableBuffer
private val buffer = new SerializableBuffer(_serializedTask)
def serializedTask: ByteBuffer = buffer.value
override def toString: String = "TaskDescription(TID=%d, index=%d)".format(taskId, index)
}
Task最终生成。
posted on 2016-04-13 01:33 luckuan1985 阅读(1423) 评论(0) 编辑 收藏 举报