朴素贝叶斯

from numpy import *
import re
import operator
import feedparser


def loadDataSet():
    posting_ist = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                   ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                   ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                   ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                   ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                   ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    class_vec = [0, 1, 0, 1, 0, 1]
    return posting_ist, class_vec


def createVocabList(data_set):  # 将矩阵内所有词放入set中去重
    vocab_set = set([])  # 创建空集
    for document in data_set:
        vocab_set = vocab_set | set(document)  # 并集
    return list(vocab_set)


def setOfWords2Vec(vocab_list, input_set):  # 统计每个词的出现次数
    return_vec = [0] * len(vocab_list)  # 创建一个所含元素都为0的向量
    for word in input_set:
        if word in vocab_list:
            return_vec[vocab_list.index(word)] = 1  # vocab_list是没有重复值的
        else:
            print(print('the word : %s is not in my vocabulary!' % word))
    return return_vec


def trainNB0(train_matrix, train_category):
    '''
    朴素贝叶斯训练函数
    :param train_matrix: 文档矩阵
    :param train_category: 文档对应标签构成的向量
    :return:
    '''
    num_train_docs = len(train_matrix)  # 矩阵行数
    num_words = len(train_matrix[0])  # 矩阵数列
    p_abusive = sum(train_category) / float(num_train_docs)  # 总侮辱语言概率
    p0_num = ones(num_words)  # 初始化概率
    p1_num = ones(num_words)
    p0_denom = 2.0
    p1_denom = 2.0
    for i in range(num_train_docs):
        if train_category[i] == 1:
            p1_num += train_matrix[i]  # 向量相加
            p1_denom += sum(train_matrix[i])  # 统计1的个数
        else:
            p0_num += train_matrix[i]
            p0_denom += sum(train_matrix[i])
    p1_vect = log(p1_num / p1_denom)
    p0_vect = log(p0_num / p0_denom)
    return p0_vect, p1_vect, p_abusive


def classifyNB(vec2_classify, p0_vec, p1_vec, p_class1):
    p1 = sum(vec2_classify * p1_vec) + log(p_class1)
    p0 = sum(vec2_classify * p0_vec) + log(1 - p_class1)
    if p1 > p0:
        return 1
    else:
        return 0


def testingNB():
    list_oposts, list_classes = loadDataSet()  # 拿到矩阵和标签
    my_vocab_list = createVocabList(list_oposts)  # 将矩阵内所有词放入set中去重
    train_mat = []
    for postin_doc in list_oposts:
        train_mat.append(setOfWords2Vec(my_vocab_list, postin_doc))  # 返回值为统计值的向量
    p0V, p1V, pAb = trainNB0(array(train_mat), array(list_classes))
    test_entry = ['love', 'my', 'dalmation']
    this_doc = array(setOfWords2Vec(my_vocab_list, test_entry))
    print(test_entry, 'classified as:', classifyNB(this_doc, p0V, p1V, pAb))
    test_entry = ['stupid', 'garbage']
    this_doc = array(setOfWords2Vec(my_vocab_list, test_entry))
    print(test_entry, 'classified as:', classifyNB(this_doc, p0V, p1V, pAb))


def bagOfWords2Vec(vocab_list, input_set):  # 统计每个词的出现次数
    return_vec = [0] * len(vocab_list)  # 创建一个所含元素都为0的向量
    for word in input_set:
        if word in vocab_list:
            return_vec[vocab_list.index(word)] += 1  # vocab_list是没有重复值的
    return return_vec


def textParse(big_string):
    list_of_tokens = re.split(r'\w*', big_string)
    return [tok.lower for tok in list_of_tokens if len(tok) > 1]


def spamTest():
    doc_list = []
    class_list = []
    full_text = []
    for i in range(1, 26):  # 导入文本文件  应为有25个文件,所以取26
        word_list = textParse(open(r'email\spam\%d.txt' % i).read())  # 导入文件解析成列表
        doc_list.append(word_list)  # 矩阵
        full_text.extend(word_list)  # 列表
        class_list.append(1)  # 垃圾邮件
        print(i)
        word_list = textParse(open(r'email\ham\%d.txt' % i).read())
        doc_list.append(word_list)
        full_text.extend(word_list)
        class_list.append(0)
    vocab_list = createVocabList(doc_list)  # 将矩阵内所有词放入set中去重
    training_set = list(range(50))  # 共50邮件
    test_set = []
    for i in range(10):  # 选十个测试
        rand_index = int(random.uniform(0, len(training_set)))  # 随机选10个
        test_set.append(training_set[rand_index])
        del (training_set[rand_index])  # 删除已选数字,防止重复选邮件
    train_mat = []
    train_classes = []
    for doc_index in training_set:  # 训练剩余40个
        train_mat.append(bagOfWords2Vec(vocab_list, doc_list[doc_index]))  # 统计训练邮件每个词的出现次数
        train_classes.append(class_list[doc_index])
    p0V, p1V, p_spam = trainNB0(array(train_mat), array(train_classes))
    error_count = 0
    for doc_index in test_set:
        word_vector = bagOfWords2Vec(vocab_list, doc_list[doc_index])
        if classifyNB(array(word_vector), p0V, p1V, p_spam) != class_list[doc_index]:
            error_count += 1
    print('the error rate is : ', float(error_count) / len(test_set))


def calcMostFreq(vocab_list,full_text):
    freq_dict = {}
    for token in vocab_list:
        freq_dict[token] = full_text.count(token)
    sorted_freq = sorted(freq_dict.items(),key=operator.itemgetter(1),reverse=True)
    return sorted_freq[:30]

def localWords(feed1,feed0):
    doc_list= []
    class_list = []
    full_text = []
    min_len = min(len(feed1.entries),len(feed0.entries))
    for i in range(min_len):
        word_list =textParse(feed1.entries[i]['summary'])
        doc_list.append(word_list)
        full_text.extend(word_list)
        class_list.append(1)
        word_list = textParse(feed0.entries[i]['summary'])
        doc_list.append(word_list)
        full_text.extend(word_list)
        class_list.append(0)
    vocab_list = createVocabList(doc_list)  # 将矩阵内所有词放入set中去重
    top30_words = calcMostFreq(vocab_list,full_text)
    for pair_w in top30_words:
        if pair_w[0] in vocab_list:
            vocab_list.remove(pair_w[0])
    training_set = list(range(2*min_len))
    test_set = []
    for i in range(20):
        rand_index = int(random.uniform(0,len(training_set)))
        test_set.append(training_set[rand_index])
        del training_set[rand_index]
    train_mat = []
    train_classes = []
    for doc_index in training_set:
        train_mat.append(bagOfWords2Vec(vocab_list,doc_list[doc_index]))
        train_classes.append(class_list[doc_index])
    p0v,p1v,p_spam = trainNB0(array(train_mat),array(train_classes))
    error_count = 0
    for doc_index in test_set:
        word_vector = bagOfWords2Vec(vocab_list,doc_list[doc_index])
        if classifyNB(array(word_vector),p0v,p1v,p_spam) != class_list[doc_index]:
            error_count += 1
    print('the error rate is : ',float(error_count)/len(test_set))
    return vocab_list,p0v,p1v


def getTopwords(nf,sf):
    vocab_list,p0v,p1v = localWords(nf,sf)
    top_ny = []
    top_sf = []
    for i in range(len(p0v)):
        if p0v[i] > -6.0:
            top_sf.append((vocab_list[i],p0v[i]))
        if p1v[i] > -6.0:
            top_ny.append((vocab_list[i],p1v[i]))
    sorted_sf = sorted(top_sf,key=lambda pair:pair[1],reverse=True)
    print('sf**sf**sf**sf**sf**')
    for item in sorted_sf:
        print(item[0])
    sorted_ny = sorted(top_ny,key=lambda pair:pair[1],reverse=True)
    print('ny**ny**ny**ny**ny**')
    for item in sorted_ny:
        print(item[0])

  

posted @ 2018-06-11 18:43  luck_L  阅读(213)  评论(0编辑  收藏  举报