k-近邻算法 简单例子

from numpy import *
import operator


def create_data_set():      # 训练集与标签
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels


group, labels = create_data_set()


def classify0(inX, data_set, labels, k):  # inX 待分类向量  data_set训练集   labels标签向量  k最相近邻居的数目  计算距离
    # for 循环前步骤用于计算距离    距离公式:d = ((xA - xB)**2 + (yA - yB)**2)**0.5
    data_set_size = data_set.shape[0]  # 阵列的行数
    diff_mat = tile(inX, (data_set_size, 1)) - data_set  # 待分类向量 - 训练集中每行阵列  相当于计xA - xB,yA - yB
    sq_diff_mat = diff_mat ** 2  # 阵列平方,就是阵列每个对应数字平方   ,相当于将上一步的差平方(xA - xB)**2
    sq_distances = sq_diff_mat.sum(axis=1)  # 求和(xA - xB)**2 + (yA - yB)**2
    distances = sq_distances ** 0.5  # 开方,得到距离   ((xA - xB)**2 + (yA - yB)**2)**0.5
    sorted_dist_indicies = distances.argsort()  # 根据距离从小到大排序排序,显示为对应索引
    class_count = {}
    for i in range(k):  # 选择距离最小的k个点
        vote_ilabel = labels[sorted_dist_indicies[i]]  # 从距离最近的开始取对应的索引,根据标签[索引]得到对应标签
        class_count[vote_ilabel] = class_count.get(vote_ilabel, 0) + 1  # 字典中有该标签,则count+1,没有就新建
    sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)  # 降序排序
    return sorted_class_count
def file2matrix(filename):  # 文本记录转换为numpy解析程序
    fr = open(filename)
    array_of_lines = fr.readlines()
    number_of_lines = len(array_of_lines)  # 得到文件行数
    return_mat = zeros((number_of_lines, 3))  # 创建用零填充的矩阵
    class_label_vector = []
    for index, line in enumerate(array_of_lines):
        line = line.strip()
        list_fromline = line.split('\t')
        return_mat[index, :] = list_fromline[0:3]
        class_label_vector.append(int(list_fromline[-1]))
    return return_mat, class_label_vector


def autoNorm(data_set):    # 数据归一化(不归一化处理会使数据值大的对结果的影响远远大于其他值)
    min_vals = data_set.min(0)  # 取列的最小值
    max_vals = data_set.max(0) # 取最大值
    ranges = max_vals - min_vals
    m = data_set.shape[0]  # 行数
    norm_data_set = data_set - tile(min_vals, (m, 1))
    norm_data_set = norm_data_set / tile(ranges, (m, 1))  # 特征值相除
    return norm_data_set, ranges, min_vals


def datingClassTest():    # 测试,得出错误率
    ho_ratio = 0.10
    dating_data_mat, dating_labels = file2matrix('datingTestSet2.txt')  # 读取文档生成训练集和标签
    norm_mat, ranges, min_vals = autoNorm(dating_data_mat)   # 进行归一化,生成①新矩阵,②max-min ③min
    m = norm_mat.shape[0]    # 行数
    num_test_vecs = int(m * ho_ratio)
    error_count = 0
    for i in range(num_test_vecs):
        classifier_result = classify0(norm_mat[i, :], norm_mat[num_test_vecs:m, :], dating_labels[num_test_vecs:m], 4)
        print('the classifier came back with:%s,the real answer is : %s' % (classifier_result, dating_labels[i]))
        if (classifier_result != dating_labels[i]): error_count += 1.0
    print('the total error rate is :%f' % (error_count / float(num_test_vecs)))


def classifyPerson():   # 用户交互的预测函数
    result_list = ['not at all', 'in small doses', 'in large doses']
    percent_tats = float(input('玩电子游戏的时间百分比?'))
    ff_miles = float(input('每年的飞行里程?'))
    ice_cream = float(input('每年消费的冰淇淋量?'))
    dating_data_mat,dating_labels = file2matrix('datingTestSet2.txt')       # 读取文档生成训练集和标签
    norm_mat, ranges, minvals = autoNorm(dating_data_mat)       # 进行归一化,生成①新矩阵,②max-min ③min
    in_arr = array([ff_miles,percent_tats, ice_cream])      # 根据用户输入建立矩阵
    classifier_result = classify0((in_arr-minvals)/ranges,norm_mat,dating_labels,3)
    print('You will probably like this person:',result_list[classifier_result-1])
# 识别手写数字
def img2vector(filename): # 将图像转换成向量 return_vect = zeros((1, 1024)) # 创建用零填充的矩阵 fr = open(filename) for i in range(32): line_str = fr.readline() for j in range(32): return_vect[0, 32 * i + j] = int(line_str[j]) return return_vect def handwritingClassTest(): hw_labels =[] training_file_list = listdir('trainingDigits') # 获取训练目录内容 m = len(training_file_list) # 目录文件数 training_mat = zeros((m, 1024)) # 用零填充m行 1024列的矩阵 for i in range(m): file_name_str = training_file_list[i] # 取出目录内的文件名 file_str = file_name_str.split('.')[0] class_num_str = int(file_str.split('_')[0]) # 根据文件名提取出标签类型 hw_labels.append(class_num_str) training_mat[i,:] = img2vector('trainingDigits\%s' % file_name_str) # 利用上面的函数将该文件转换为向量并复制给矩阵 test_file_list = listdir('testDigits') # 获取测试文件内容 error_count = 0.0 m_test = len(test_file_list) # 获取测试文件数目 for i in range(m_test): file_name_str = test_file_list[i] file_str = file_name_str.split('.')[0] class_num_str = int(file_str.split('_')[0]) vector_under_test = img2vector('testDigits\%s' % file_name_str) classifier_result = classify0(vector_under_test,training_mat,hw_labels,3) print('the classifier came back with : %s,the real answer is : %s'% (classifier_result,class_num_str)) if classifier_result != class_num_str: error_count += 1.0 print('\n the total number of errors is : %s '% error_count) print('\n the total error rate is : %s' % (error_count/float(m_test)))

  

  

posted @ 2018-06-03 14:57  luck_L  阅读(899)  评论(0编辑  收藏  举报