[Hadoop 2.2 + Solr 4.5]系列之三:MapReduce + Lucene 生成Index文件
[Hadoop 2.2 + Solr 4.5]系列之三:MapReduce + Lucene 生成Index文件
即上篇Hadoop2.2的配置与启动以来,我们这里就不过多的详解Mapreduce算法了,下面我们直接讲诉Mapred+Lucene。
1)、思路:
通过Map用来读取Hdfs文件,并在本地生成,最后将文件上传到HDFS上。仿照Nutch的代码。
Hadoop2.X貌似没有提供之前版本的eclipse插件,这里我们就直接通过eclipse进行编写Mapred程序,然后直接上传到Master.Hadoop中直接运行。
项目引用的jar包主要有Hadoop2.2的
hadoop-2.2.0\share\hadoop\ |--common\ |--lib\*.jar |--hadoop-common-2.2.0.jar |--hadoop-nfs-2.2.0.jar |--hdfs\ |--hadoop-hdfs-2.2.0.jar |--hadoop-hdfs-nfs-2.2.0.jar |--mapreduce\ |--*.jar |--tools\lib\ |--*.jar |--yarn\ |--*.jar Lucene4.5 的四个Jar lucene-4.5.0\core\lucene-core-4.5.0.jar lucene-4.5.0\analysis\common\lucene-analyzers-common-4.5.0.jar lucene-4.5.0\queries\lucene-queries-4.5.0.jar lucene-4.5.0\queryparser\lucene-queryparser-4.5.0.jar
2)、代码献上来:
HDFSDocument.java

package com.yu.mapred.lib; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.HashMap; import java.util.Iterator; import org.apache.hadoop.io.Writable; /* * 自定义的一种hadoop输出类型,存储的内容是一个Map<String,String>. */ public class HDFSDocument implements Writable { HashMap<String, String> fields = new HashMap<String, String>(); public void setFields(HashMap<String, String> fields) { this.fields = fields; } public HashMap<String, String> getFields() { return this.fields; } @Override public void readFields(DataInput in) throws IOException { fields.clear(); String key = null, value = null; int size = in.readInt(); for (int i = 0; i < size; i++) { // 依次读取两个字符串,形成一个Map值 key = in.readUTF(); value = in.readUTF(); fields.put(key, value); } } @Override public void write(DataOutput out) throws IOException { String key = null, value = null; Iterator<String> iter = fields.keySet().iterator(); out.writeInt(fields.size()); while (iter.hasNext()) { key = iter.next(); value = fields.get(key); // 依次写入<Key,Value>两个字符串 out.writeUTF(key); out.writeUTF(value); } } }
HDFSDocumentOutputFormat.java

package com.yu.mapred.lib; import java.io.File; import java.io.IOException; import java.util.HashMap; import java.util.Iterator; import java.util.Random; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.RecordWriter; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.lib.MultipleOutputFormat; import org.apache.hadoop.util.Progressable; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.StringField; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.index.LogDocMergePolicy; import org.apache.lucene.index.LogMergePolicy; import org.apache.lucene.store.FSDirectory; import org.apache.lucene.util.Version; /** * job.setOutputValueClass(HDFSDocument.class); * job.setOutputFormat(HDSDocumentOutput.class); */ public class HDFSDocumentOutputFormat extends MultipleOutputFormat<Text, HDFSDocument> { protected static class LuceneWriter { private Path perm; private Path temp; private FileSystem fs; private IndexWriter writer; public void open(JobConf job, String name) throws IOException{ this.fs = FileSystem.get(job); perm = new Path(FileOutputFormat.getOutputPath(job), name); // 临时本地路径,存储临时的索引结果 temp = job.getLocalPath("index/_" + Integer.toString(new Random().nextInt())); fs.delete(perm, true); // 配置IndexWriter(个人对Lucene索引的参数不是太熟悉) Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_45); IndexWriterConfig conf = new IndexWriterConfig(Version.LUCENE_45, analyzer); conf.setMaxBufferedDocs(100000); LogMergePolicy mergePolicy = new LogDocMergePolicy(); mergePolicy.setMergeFactor(100000); mergePolicy.setMaxMergeDocs(100000); conf.setMergePolicy(mergePolicy); conf.setRAMBufferSizeMB(256); conf.setMergePolicy(mergePolicy); writer = new IndexWriter(FSDirectory.open(new File(fs.startLocalOutput(perm, temp).toString())), conf); } public void close() throws IOException{ // 索引优化和IndexWriter对象关闭 writer.commit(); writer.close(); // 将本地索引结果拷贝到HDFS上 fs.completeLocalOutput(perm, temp); fs.createNewFile(new Path(perm,"index.done")); } /* * 接受HDFSDocument对象,从中读取信息并建立索引 */ public void write(HDFSDocument doc) throws IOException{ String key = null; HashMap<String, String> fields = doc.getFields(); Iterator<String> iter = fields.keySet().iterator(); while(iter.hasNext()){ key = iter.next(); Document luceneDoc = new Document(); // 如果使用Field.Index.ANALYZED选项,则默认情况下会对中文进行分词。 // 如果这时候采用Term的形式进行检索,将会出现检索失败的情况。 luceneDoc.add(new StringField("key", key, Field.Store.YES)); luceneDoc.add(new StringField("value", fields.get(key), Field.Store.YES)); writer.addDocument(luceneDoc); } } } @Override protected String generateFileNameForKeyValue(Text key, HDFSDocument value, String leaf) { return new Path(key.toString(), leaf).toString(); } @Override protected Text generateActualKey(Text key, HDFSDocument value) { return key; } @Override public RecordWriter<Text, HDFSDocument> getBaseRecordWriter( final FileSystem fs, JobConf job, String name, final Progressable progress) throws IOException { final LuceneWriter writer = new LuceneWriter(); writer.open(job, name); return new RecordWriter<Text, HDFSDocument>() { @Override public void write(Text key, HDFSDocument doc) throws IOException { writer.write(doc); } @Override public void close(Reporter reporter) throws IOException { writer.close(); } }; } }
以及Mapred主程序:

package com.yu.mapred.lib; import java.io.IOException; import java.util.Date; import java.util.HashMap; import java.util.Iterator; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapreduce.filecache.DistributedCache; @SuppressWarnings("deprecation") public class TestLucene { public static class MapHdfsDocument extends MapReduceBase implements Mapper<LongWritable, Text, Text, HDFSDocument> { private Text word = new Text("mmmm"); public void map(LongWritable key, Text value, OutputCollector<Text, HDFSDocument> output, Reporter reporter) throws IOException { HDFSDocument document = new HDFSDocument(); HashMap<String, String> map = document.getFields(); map.put(key.toString(), value.toString()); output.collect(word, document); } } public static class ReduceLuceneIndex extends MapReduceBase implements Reducer<Text, HDFSDocument, Text, HDFSDocument> { public void reduce(Text key, Iterator<HDFSDocument> values, OutputCollector<Text, HDFSDocument> output, Reporter reporter) throws IOException { while (values.hasNext()) { output.collect(key, values.next()); } } } public static void main(String[] args) throws Exception { String[] ars = new String[] { "/input/2013_10_21_00_00-2013_10_22_00_00.csv", "/output/test_lucene_" + new Date().getTime() % 100 }; JobConf job = new JobConf(TestLucene.class); job.setJobName("testmapred-lucene"); job.set("mapred.job.tracker", "Master.Hadoop:9001"); DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-analyzers-common-4.5.0.jar"), job); DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-core-4.5.0.jar"), job); DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-queries-4.5.0.jar"), job); DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-queryparser-4.5.0.jar"), job); //not work // job.addResource(new Path("/jars/lucene-4.5/lucene-analyzers-common-4.5.0.jar")); // job.addResource(new Path("/jars/lucene-4.5/lucene-core-4.5.0.jar")); // job.addResource(new Path("/jars/lucene-4.5/lucene-queries-4.5.0.jar")); // job.addResource(new Path("/jars/lucene-4.5/lucene-queryparser-4.5.0.jar")); // job.setJar("/jars/lucene-4.5/lucene-analyzers-common-4.5.0.jar"); // job.setJar("/jars/lucene-4.5/lucene-core-4.5.0.jar"); // job.setJar("/jars/lucene-4.5/lucene-queries-4.5.0.jar"); // job.setJar("/jars/lucene-4.5/lucene-queryparser-4.5.0.jar"); job.setOutputKeyClass(Text.class); job.setOutputValueClass(HDFSDocument.class); job.setMapperClass(MapHdfsDocument.class); job.setReducerClass(ReduceLuceneIndex.class); job.setInputFormat(TextInputFormat.class); job.setOutputFormat(HDFSDocumentOutputFormat.class); FileInputFormat.setInputPaths(job, new Path(ars[0])); FileOutputFormat.setOutputPath(job, new Path(ars[1])); JobClient.runJob(job); } }
3)、HDFS上传文件
$ hadoop dfs -mkdir /input $ hadoop dfs -put [本地文件] /input/2013_10_21_00_00-2013_10_22_00_00.csv --同上在HDFS上创建/jars目录上传Lucene的4个jar包,用于程序中,Mapred程序通过HDFS加载jar包 ---运行程序 $ hadoop jar testlucene.jar com.yu.mapred.lib.TestLucene
4)、注意: 该项目主要是测试Hadoop Mapreduce + Lucene,所以文件的Map方法就是随便一写。用户可以根据对应的需求创建对应map方法。
生成后可以通过 WEB访问HDFS
其中index.done文件只是为了标记HDFS上的Index文件已经创建完成。