[Hadoop 2.2 + Solr 4.5]系列之三:MapReduce + Lucene 生成Index文件

[Hadoop 2.2 + Solr 4.5]系列之三:MapReduce + Lucene 生成Index文件

 

即上篇Hadoop2.2的配置与启动以来,我们这里就不过多的详解Mapreduce算法了,下面我们直接讲诉Mapred+Lucene。

 

1)、思路:


 

通过Map用来读取Hdfs文件,并在本地生成,最后将文件上传到HDFS上。仿照Nutch的代码。

Hadoop2.X貌似没有提供之前版本的eclipse插件,这里我们就直接通过eclipse进行编写Mapred程序,然后直接上传到Master.Hadoop中直接运行。

项目引用的jar包主要有Hadoop2.2的

hadoop-2.2.0\share\hadoop\
     |--common\
                   |--lib\*.jar
         |--hadoop-common-2.2.0.jar
         |--hadoop-nfs-2.2.0.jar
               |--hdfs\
         |--hadoop-hdfs-2.2.0.jar
         |--hadoop-hdfs-nfs-2.2.0.jar
               |--mapreduce\
         |--*.jar
               |--tools\lib\
         |--*.jar
               |--yarn\
         |--*.jar

Lucene4.5 的四个Jar
lucene-4.5.0\core\lucene-core-4.5.0.jar
lucene-4.5.0\analysis\common\lucene-analyzers-common-4.5.0.jar
lucene-4.5.0\queries\lucene-queries-4.5.0.jar
lucene-4.5.0\queryparser\lucene-queryparser-4.5.0.jar

 

 

2)、代码献上来:


HDFSDocument.java

package com.yu.mapred.lib;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;

import org.apache.hadoop.io.Writable;
/*
 * 自定义的一种hadoop输出类型,存储的内容是一个Map<String,String>.
 */
public class HDFSDocument implements Writable {
        HashMap<String, String> fields = new HashMap<String, String>();

        public void setFields(HashMap<String, String> fields) {
                this.fields = fields;
        }

        public HashMap<String, String> getFields() {
                return this.fields;
        }

        @Override
        public void readFields(DataInput in) throws IOException {
                fields.clear();
                String key = null, value = null;

                int size = in.readInt();
                for (int i = 0; i < size; i++) {
                        // 依次读取两个字符串,形成一个Map值
                        key = in.readUTF();
                        value = in.readUTF();
                        fields.put(key, value);
                }
        }

        @Override
        public void write(DataOutput out) throws IOException {
                String key = null, value = null;
                Iterator<String> iter = fields.keySet().iterator();
                out.writeInt(fields.size());
                while (iter.hasNext()) {
                        key = iter.next();
                        value = fields.get(key);
                        // 依次写入<Key,Value>两个字符串
                        out.writeUTF(key);
                        out.writeUTF(value);
                }
        }
}
View Code

HDFSDocumentOutputFormat.java

package com.yu.mapred.lib;

import java.io.File;
import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Random;

import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RecordWriter;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.lib.MultipleOutputFormat;
import org.apache.hadoop.util.Progressable;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.StringField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.LogDocMergePolicy;
import org.apache.lucene.index.LogMergePolicy;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;

/**
 * job.setOutputValueClass(HDFSDocument.class);
 * job.setOutputFormat(HDSDocumentOutput.class);
 */
public class HDFSDocumentOutputFormat extends
        MultipleOutputFormat<Text, HDFSDocument> {

    protected static class LuceneWriter
    {
        private Path perm;
        private Path temp;
        private FileSystem fs;
        private IndexWriter writer;
         
        public void open(JobConf job, String name) throws IOException{
            this.fs = FileSystem.get(job);
            perm = new Path(FileOutputFormat.getOutputPath(job), name); 
             
            // 临时本地路径,存储临时的索引结果
            temp = job.getLocalPath("index/_" + Integer.toString(new Random().nextInt()));
            fs.delete(perm, true);
             
            // 配置IndexWriter(个人对Lucene索引的参数不是太熟悉)
            Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_45);
            IndexWriterConfig conf = new IndexWriterConfig(Version.LUCENE_45, analyzer);
            conf.setMaxBufferedDocs(100000);        
            LogMergePolicy mergePolicy = new LogDocMergePolicy();
            mergePolicy.setMergeFactor(100000);
            mergePolicy.setMaxMergeDocs(100000);
            conf.setMergePolicy(mergePolicy);       
            conf.setRAMBufferSizeMB(256);
            conf.setMergePolicy(mergePolicy);       
             
            writer = new IndexWriter(FSDirectory.open(new File(fs.startLocalOutput(perm, temp).toString())),
                                    conf);
        }
        public void close() throws IOException{
            // 索引优化和IndexWriter对象关闭
            writer.commit();
            writer.close();
             
            // 将本地索引结果拷贝到HDFS上
            fs.completeLocalOutput(perm, temp);
            fs.createNewFile(new Path(perm,"index.done"));      
        }
         
        /*
        * 接受HDFSDocument对象,从中读取信息并建立索引
        */
        public void write(HDFSDocument doc) throws IOException{
     
            String key = null;
            HashMap<String, String> fields = doc.getFields();
            Iterator<String> iter = fields.keySet().iterator();
            while(iter.hasNext()){
                key = iter.next();
                             
                Document luceneDoc = new Document();
                 
                // 如果使用Field.Index.ANALYZED选项,则默认情况下会对中文进行分词。
                // 如果这时候采用Term的形式进行检索,将会出现检索失败的情况。
                luceneDoc.add(new StringField("key", key, Field.Store.YES));
                luceneDoc.add(new StringField("value", fields.get(key), Field.Store.YES));                      
                writer.addDocument(luceneDoc);
            }
        }
        
    }

    @Override
    protected String generateFileNameForKeyValue(Text key, HDFSDocument value,
            String leaf) {
        return new Path(key.toString(), leaf).toString();
    }

    @Override
    protected Text generateActualKey(Text key, HDFSDocument value) {
        return key;
    }

    @Override
    public RecordWriter<Text, HDFSDocument> getBaseRecordWriter(
            final FileSystem fs, JobConf job, String name,
            final Progressable progress) throws IOException {
        final LuceneWriter writer = new LuceneWriter();
        writer.open(job, name);
        return new RecordWriter<Text, HDFSDocument>() {
            @Override
            public void write(Text key, HDFSDocument doc) throws IOException {
                writer.write(doc);
                
            }
            @Override
            public void close(Reporter reporter) throws IOException {
                writer.close();
            }
        };
    }

}
View Code

以及Mapred主程序:

package com.yu.mapred.lib;

import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Iterator;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapreduce.filecache.DistributedCache;

@SuppressWarnings("deprecation")
public class TestLucene {

    public static class MapHdfsDocument extends MapReduceBase implements
            Mapper<LongWritable, Text, Text, HDFSDocument> {
        private Text word = new Text("mmmm");

        public void map(LongWritable key, Text value,
                OutputCollector<Text, HDFSDocument> output, Reporter reporter)
                throws IOException {

            HDFSDocument document = new HDFSDocument();
            HashMap<String, String> map = document.getFields();
            map.put(key.toString(), value.toString());
            output.collect(word, document);
        }
    }

    public static class ReduceLuceneIndex extends MapReduceBase implements
            Reducer<Text, HDFSDocument, Text, HDFSDocument> {
        public void reduce(Text key, Iterator<HDFSDocument> values,
                OutputCollector<Text, HDFSDocument> output, Reporter reporter)
                throws IOException {
            while (values.hasNext()) {
                output.collect(key, values.next());
            }
            
        }
    }

    public static void main(String[] args) throws Exception {
        
        String[] ars = new String[] { "/input/2013_10_21_00_00-2013_10_22_00_00.csv",
                "/output/test_lucene_" + new Date().getTime() % 100 };
        JobConf job = new JobConf(TestLucene.class);
        job.setJobName("testmapred-lucene");
        job.set("mapred.job.tracker", "Master.Hadoop:9001");
        
        
        DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-analyzers-common-4.5.0.jar"), job);   
        DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-core-4.5.0.jar"), job);               
        DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-queries-4.5.0.jar"), job);           
        DistributedCache.addFileToClassPath(new Path("/jars/lucene-4.5/lucene-queryparser-4.5.0.jar"), job);       

//not work
//        job.addResource(new Path("/jars/lucene-4.5/lucene-analyzers-common-4.5.0.jar"));
//        job.addResource(new Path("/jars/lucene-4.5/lucene-core-4.5.0.jar"));
//        job.addResource(new Path("/jars/lucene-4.5/lucene-queries-4.5.0.jar"));
//        job.addResource(new Path("/jars/lucene-4.5/lucene-queryparser-4.5.0.jar"));
//        job.setJar("/jars/lucene-4.5/lucene-analyzers-common-4.5.0.jar");
//        job.setJar("/jars/lucene-4.5/lucene-core-4.5.0.jar");
//        job.setJar("/jars/lucene-4.5/lucene-queries-4.5.0.jar");
//        job.setJar("/jars/lucene-4.5/lucene-queryparser-4.5.0.jar");
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(HDFSDocument.class);

        job.setMapperClass(MapHdfsDocument.class);
        job.setReducerClass(ReduceLuceneIndex.class);

        job.setInputFormat(TextInputFormat.class);
        job.setOutputFormat(HDFSDocumentOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path(ars[0]));
        FileOutputFormat.setOutputPath(job, new Path(ars[1]));
        
        JobClient.runJob(job);
    }
}
View Code

 

3)、HDFS上传文件

$ hadoop dfs -mkdir /input
$ hadoop dfs -put [本地文件] /input/2013_10_21_00_00-2013_10_22_00_00.csv

--同上在HDFS上创建/jars目录上传Lucene的4个jar包,用于程序中,Mapred程序通过HDFS加载jar包

---运行程序
$ hadoop jar testlucene.jar com.yu.mapred.lib.TestLucene

 

 

4)、注意: 该项目主要是测试Hadoop Mapreduce + Lucene,所以文件的Map方法就是随便一写。用户可以根据对应的需求创建对应map方法。

生成后可以通过 WEB访问HDFS

其中index.done文件只是为了标记HDFS上的Index文件已经创建完成。

posted on 2013-10-30 18:18  于清华  阅读(1316)  评论(0)    收藏  举报

导航