Polynomial Differentiation多项式微分
%幂级数
f(x) = x^3-2x-5;
p = [1 0 -2 -5] %自变量前系数
polyval()
eg:
a = [9, -5, 3, 7];
x = -2:0.01:5;
f = polyval(a,x); %表示a系数下的X处的微商数值
plot(x,f,'LineWidth',2);
xlabel('x');
ylabel('f(x)');
set(gca,'FontSize',14)
polyder() %给的是微商式子
eg:
p = [5 0 -2 0 1];
polyder(p) %微分符号
eg:
p = [5 0 -2 0 1];
polyder(p);
polyval(polyder(p),7)
Polynomial Integration多项式积分
polyint() %不定积分
eg:
p = [5 0 -2 0 1];
polyint(p,3); %积分后的常数项是3
polyval(polyint(p,3),7) %不定积分7处的积分值
Numerical Differentiation
diff() %计算前后差异
eg1:
x = [1 2 5 2 1];
diff(x) % ans = [1 3 -3 -1];
eg2(两点斜率(1,5),(2,7)):
x = [1 2];
y = [5 7];
slope = diff(y)./diff(x)
eg3:
x0 = pi/2;
h = 0.1;
x = [x0 x0+h];
y = [sin(x0) sin(x0+h)];
m = diff(y)./diff(x)
eg4:
h = 0.5;
x = 0:h:2*pi;
y = sin(x);
m = diff(y)./diff(x);
//h的大小对于导函数的影响:
g = colormap(lines);
hold on;
for i = 1:4
x = 0:power(10,-i):pi;
y = sin(x);
m = diff(y)./diff(x);
plot(x(1:end-1),m,'Color',g(i,:));
end
hold off;
set(gca,'XLim',[0,pi/2]);
set(gca,'YLim',[0,1.2]);
set(gca,'FontSize',18);
set(gca,'FontName','symbol');
set(gca,'XTick',0:pi/4:pi/2);
set(gca,'XTickLabel',{'0','p/4','p/2'});
h = legend('h = 0.1','h = 0.01','h = 0.001','h = 0.0001');
set(h,'FontName','Times New Roman');
box on;
Second and Third Derivatives
x = -2:0.005:2;
y = x.^3;
m = diff(y)./diff(x);
m2 = diff(m)./diff(x(1:end-1));
plot(x,y,x(1:end-1),m,x(1:end-2),m2);
xlabel('x','FontSize',18);
ylabel('y','FontSize',18);
legend('f(x) = x^3','f''(x)','f''''(x)');
set(gca, 'FontSize',18);
Numerical Integration
Midpoint Rule用矩形去逼近
h = 0.05;
x = 0:h:2;
midpoint = (x(1:end-1)+x(2:end))./2;
y = 4*midpoint.^3; %f(x) = 4*x^3;
s = sum(h*y)
Trapezoid Rule用梯形去逼近
trapz();%梯形数值积分
eg:
h = 0.05;
x = 0:h:2;
y = 4*x.^3;
s = h*trapz(y);
OR:
h = 0.05;
x = 0:h:2;
y = 4*x.^3;
trapezoid = (y(1:end-1)+y(2:end))/2;
s = h*sum(trapezoid);
Simpson's Rule
h = 0.05;
x = 0:h:2;
y = 4*x.^3;
s = h/3*(y(1)+2*sum(y(3:2:end-2))+4*sum(y(2:2:end))+y(end))
Funtion Handles(@)
function [y] = xy_plot(input,x) %丢入类似@sin ; 一个函数不能作为input % xy_plot receives the handle of a function and plots that %function of x y = input(x); plot(x,y,'r--'); xlabel('x'); ylabel('function(x)'); end integral(); eg: y = @(x) 1/(x.^3-2*x-5); integral(y,0,2) %0,2是上下限
Double and Triple Integrals
eg1: f = @(x,y) y.*sin(x)+x.*cos(y); integral2(f,pi,2*pi,0,pi) %二重积分,顺序跟书写的一样 eg2: f = @(x,y,z) y.*sin(x)+z.*cos(y); integral3(f,0,pi,0,1,-1,1);