PyTorch 最新安装教程

PyTorch 最新安装教程

1. 安装 Anaconda
Anaconda 是一个用于科学计算的 Python 发行版,支持 Linux, Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包。

Anaconda 安装包可以到 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 下载 or 也可以去官网下载。

2. 检查显卡,更新驱动
建议是首先更新驱动,全都按最新的东西来安装
https://www.nvidia.cn/Download/index.aspx?lang=cn#

在这里选择自己的显卡型号,下载安装即可,下载很快也很简单,建议大多数人都更新一下显卡驱动,避免不必要的麻烦。

 

 

  1. 安装好后进入NVIDIA控制面板,鼠标右键可进入

 

 点击组件找到自己CUDA的版本号

 

 或者 win+R—> cmd ,进入命令行,输入:

nvidia-smi

 

 

如果没有这条命令,则需要添加环境变量(百度配置)一般电脑都可以直接用,我的显卡是:GF:MX250

也可获得版本号:

 

 

备注:第二步不一定是必须的,如果你的电脑较新,那么不更新也可以直接进行下面操作,我的电脑是19年买的,中间好像也没更新驱动,这一步直接跳过,最后也安装成功了。

3. 创建PyTorch环境
不同的项目需要不同的虚拟环境,可以处理不同版本的项目之间不兼容问题。

  1.进入 Anaconda prompt 命令窗口

 

 2. 输入以下内容:

conda create -n PyTorch python=3.8

PyTorch是虚拟环境名字(可以随意设置),3.8 是python版本,都可以按自己需求改,一定要指定具体 python 版本。

 

 然后按 y继续安装所需的各种依赖包。

  1. 创建成功后,输入以下命令:
conda info --envs

可以看见自己的所有环境

 

 如果出现错误,可能是外网下载过慢,需要配置国内镜像源。

  4. 配置清华TUNA镜像源
TUNA 提供了 Anaconda 仓库与第三方源(conda-forge、msys2、pytorch等,查看完整列表)的镜像,各系统都可以通过修改用户目录下的 .condarc 文件。Windows 用户无法直接创建名为 .condarc 的文件,可先执行 conda config --set show_channel_urls yes 生成该文件之后再修改。

注:由于更新过快难以同步,TUNA不同步pytorch-nightly, pytorch-nightly-cpu, ignite-nightly这三个包。
  1. 生成 .condarc 文件

 Anaconda prompt 命令窗口,中输入:

conda config --set show_channel_urls yes

之后可以在 C:\Users\xxx 中看到 .condarc 文件

 

 2. 记事本打开 .condarc 文件,重写其中的内容。

复制代码
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
复制代码

 

 

即可添加 Anaconda Python 免费仓库。

Anaconda prompt 命令窗口运行 conda clean -i 清除索引缓存,保证用的是镜像站提供的索引。

5. 安装 PyTorch

  1. 进入pytorch官网:https://pytorch.org/

  2. 网页下拉,即可看到下图,官网会自动根据你的电脑,显示的即是你可安装的CUDA版本,并给出安装命令。

 

 

  1. 复制官网提供的命令
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
  1. 打开 Anaconda prompt 命令窗口,进入你刚刚所创建的环境(我的命名是PyTorch)
conda activate PyTorch

进入环境

 

   5. 最后输入官网提供的命令,即可下载

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

 

 

 

 

每个人的命令,会由于电脑配置而各不同

注意:下载安装过程,可能因为某些原因,并不是很顺利,但遇到问题不要慌,另外网速一定要好,避免出现不必要的错误。

6. 测试

打开 Anaconda prompt 命令窗口,激活环境,输入python,进入python开发环境中

import torch
torch.cuda.is_available()
True

 

 看到True的那一刻,我真的开心,终于成功了。

 

posted @   咖啡陪你  阅读(3005)  评论(1编辑  收藏  举报
编辑推荐:
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· PostgreSQL 和 SQL Server 在统计信息维护中的关键差异
阅读排行:
· DeepSeek “源神”启动!「GitHub 热点速览」
· 我与微信审核的“相爱相杀”看个人小程序副业
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· spring官宣接入deepseek,真的太香了~
点击右上角即可分享
微信分享提示