筱天考研加油 ------ 博客首页

软件工程第三次作业!

<font face="黑体"color=Blue size=6>1.题目要求

最大连续子数组和(最大子段和)
问题描述: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n
例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

<font face="黑体"color=Red size=6>2.程序设计

2.1程序设计思想:(动态规划思想)

状态方程 : max( dp[ i ] ) = getMax( max( dp[ i -1 ] ) + arr[ i ] ,arr[ i ] )
上面式子的意义是:我们从头开始遍历数组,遍历到数组元素 arr[ i ] 时,连续的最大的和 可能为 max( dp[ i -1 ] ) + arr[ i ] ,也可能为 arr[ i ] ,做比较即可得出哪个更大,取最大值。时间复杂度为 n。

2.2程序代码

Coding.net代码地址

#include<iostream>
using namespace std;
int GetMax(int a, int b)   //得到两个数的最大值
{
	return (a) > (b) ? (a) : (b);
}
int GetMaxAddOfArray(int* arr, int sz)
{
	if (arr == NULL || sz <= 0)
		return 0;
	int tem = 0;
	for (int i = 0; i < sz; i++)
	{
		if (arr[i] < 0)
			tem++;
	}
	if (tem == sz)
		return 0;
	else
	{
		int Sum = arr[0];   //临时最大值
		int MAX = arr[0];   //比较之后的最大值
		for (int i = 1; i < sz; i++)
		{
			Sum = GetMax(Sum + arr[i], arr[i]);   //状态方程
			if (Sum >= MAX)
				MAX = Sum;
		}
		return MAX;
	}
}
int main()
{
	int array[] = { -1,-3,4,6,-2,6,-1,0 };//2, 3, -6, 4, 6, 2, -2, 5, -9
	int sz = sizeof(array) / sizeof(array[0]);
	int MAX = GetMaxAddOfArray(array, sz);
	cout << MAX << endl;
	return 0;
}

<font face="黑体"color=Green size=6>3.测试程序

3.1逻辑图的设计

3.2判定/条件覆盖测试

First Second Third Fourth Fifth Sixth
arr数组为空 arr[i]<0 i<sz tem==sz j<sz Sum>=Max
arr数组不为空 arr[i]>=0 i>=sz tem!=sz j>=sz Sum<Max

3.3样例的选择

3.3.1

样例1:arr{};

3.3.2

样例2:arr{4}={-1,-2,-3,-4};

3.3.3

样例3:arr{8}={-1,-3,4,6,-2,6,-1,0};

3.4测试程序代码

#include <stdafx.h>
#include <CppUnitTest.h>
extern int GetMaxAddOfArray(int* arr, int sz);
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
namespace UnitTest1
{		
	TEST_CLASS(UnitTest1)
	{
	public:
		TEST_METHOD(TestMethod1)
		{
			int *array  = {};
			int sz = sizeof(array) / sizeof(array[0]);
			int Max=GetMaxAddOfArray(array,sz);
			Assert::AreEqual(Max,0);
		}
		TEST_METHOD(TestMethod2)
		{
			int array[]= { -1,-2,-3,-4 };
			int sz = sizeof(array) / sizeof(array[0]);
			int Max = GetMaxAddOfArray(array,sz);
			Assert::AreEqual(Max,0);
		}
		TEST_METHOD(TestMethod3)
		{
			int array[]= { -1,-3,4,6,-2,6,-1,0 };
			int sz = sizeof(array) / sizeof(array[0]);
			int Max = GetMaxAddOfArray(array,sz);
			Assert::AreEqual(Max,14);
		}
	};
}

<font face="黑体"color=Orange size=6>4.测试结果

测试结果一开始由于对数据设置的出错导致其中有一个测试样例出错,如下图所示:

后来经更正三组测试用例全部通过,如下图所示:

<font face="黑体"color=Yellow size=6>5.心得体会

It is obvious that:A little care in each step will shorten the time and improve the efficiency!
posted @ 2019-04-14 16:00  林天成  阅读(309)  评论(0编辑  收藏  举报